@@ -7,7 +7,6 @@ var debug = true;
7
7
const instruct_fontsize = 21 ;
8
8
const rocket_selection_deadline = null ; // ms
9
9
const cue_duration = 1500 ;
10
- const feedback_duration = 1500 ;
11
10
12
11
var rnorm = new Ziggurat ( ) ; // rnorm.nextGaussian() * 5 to generate random normal variable with mean 0 sd 5
13
12
var itis = iti_exponential ( 200 , 700 ) ; // intervals between dot-motion reps
@@ -23,8 +22,9 @@ const num_majority = 300;
23
22
var dot_motion_parameters ;
24
23
25
24
// training block parameters
26
- const num_reward_trials = 40 ;
27
- const num_probe_trials = 20 ;
25
+ const num_reward_trials = 4 ;
26
+ const num_probe_trials = 2 ;
27
+ const feedback_duration = 1500 ;
28
28
29
29
// colours used for task, with left and right randomized for each experiment
30
30
// TODO orange and red might be too similar?!? (green/blue too??)
@@ -150,7 +150,6 @@ var rocket_chosen = {
150
150
151
151
152
152
var pre_training_rt = [ ] ;
153
- var training_rt = [ ] ;
154
153
var training_points = [ ] ;
155
154
var is_pre_training ;
156
155
var is_training ;
@@ -188,7 +187,6 @@ var dot_motion = {
188
187
console . log ( 'Pre-training rt added:' , data . rt ) ;
189
188
}
190
189
} else if ( is_training ) {
191
- training_rt . push ( data . rt ) ;
192
190
training_points . push ( calculate_points ( data . rt , points ) ) ;
193
191
if ( debug ) {
194
192
console . log ( 'Training rt added:' , data . rt ) ;
@@ -198,12 +196,16 @@ var dot_motion = {
198
196
console . log ( 'Your answer is correct' ) ;
199
197
}
200
198
} else {
199
+ if ( is_training ) {
200
+ training_points . push ( 0 ) ;
201
+ }
201
202
if ( debug ) {
202
203
console . log ( 'Your answer is incorrect' )
203
204
}
204
205
// TODO push to global variable and save to data 0 points
205
206
}
206
207
data . congruent = dot_motion_parameters . congruent ;
208
+ data . points = training_points [ training_points . length - 1 ] ;
207
209
} ,
208
210
post_trial_gap : function ( ) { return random_choice ( itis ) }
209
211
}
@@ -310,11 +312,12 @@ var training_timeline_variables = get_training_timeline_variables(num_reward_tri
310
312
311
313
var feedback = {
312
314
type : "html-keyboard-response" ,
315
+ choices : [ ] ,
316
+ trial_duration : feedback_duration ,
313
317
stimulus : function ( ) {
314
318
if ( training_timeline_variables [ training_index ] . trial_type == 'reward' ) {
315
- return sum ( training_points . slice ( training_points . length - 3 ) ) . toString ( )
316
- } else if ( training_timeline_variables [ training_index ] . trial_type == 'probe' ) {
317
- return '0'
319
+ let point_scored = mean ( training_points . slice ( training_points . length - 3 ) ) + rnorm . nextGaussian ( ) * 5 ;
320
+ return generate_html ( Math . round ( point_scored ) , font_colour , 89 , [ 0 , - 200 ] ) ;
318
321
} else {
319
322
return ''
320
323
}
@@ -326,6 +329,7 @@ var feedback = {
326
329
on_finish : function ( data ) {
327
330
document . body . style . backgroundImage = '' ;
328
331
data . cue_type = training_timeline_variables [ training_index ] . trial_type ;
332
+ data . mean_points = mean ( training_points . slice ( training_points . length - 3 ) ) ;
329
333
training_index ++ ;
330
334
} ,
331
335
}
0 commit comments