-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscoring.py
231 lines (176 loc) · 9.36 KB
/
scoring.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
"""
To calculate metrics for generated samples.
"""
import json
import nltk
import math
from collections import Counter
# from rouge_score import rouge_scorer
import argparse
from bert_score import score
from eval_models import *
from nltk import word_tokenize
from sentence_transformers import SentenceTransformer, util
from distinct_n.metrics import distinct_n_corpus_level
from nltk.translate.bleu_score import sentence_bleu, corpus_bleu
from tqdm import tqdm
import numpy as np
from bleurt import score as new_bleurt_score
import glob
import re
def clip_after_last_full_stop(input_string):
last_full_stop_index = input_string.rfind('.')
if last_full_stop_index != -1:
clipped_string = input_string[:last_full_stop_index + 1]
# The +1 is to include the last full stop in the clipped string
return clipped_string
else:
# If there is no full stop, return the original string
return input_string
def calculate_ngram_entropy(sentences, n):
total_ngrams = 0
ngram_counts = Counter()
for sentence in sentences:
tokens = nltk.word_tokenize(sentence.lower()) # Tokenize the sentence into words
ngrams = nltk.ngrams(tokens, n) # Generate n-grams for the sentence
ngram_counts.update(ngrams) # Update n-gram counts
total_ngrams += len(tokens) - n + 1 # Update total n-grams count
entropy = 0.0
for count in ngram_counts.values():
probability = count / total_ngrams
entropy -= probability * math.log2(probability) # Calculate entropy for each n-gram
return entropy
def calculate_self_bleu(corpus, n):
self_bleu_scores = []
for i, hypothesis in tqdm(enumerate(corpus), desc='Self BLEU-'+str(n), total=len(corpus)):
references = corpus[:i] + corpus[i+1:] # Exclude current sentence from references
self_bleu = sentence_bleu(references, hypothesis, weights=[1/n for _ in range(n)])
self_bleu_scores.append(self_bleu)
return sum(self_bleu_scores) / len(self_bleu_scores)
def calculate_bleu_2(cs, org_cs):
cs_tokenized = [sentence.split() for sentence in cs]
org_cs_tokenized = [sentence.split() for sentence in org_cs]
return corpus_bleu(org_cs_tokenized, cs_tokenized, weights=(0.5, 0.5))
def calculate_rouge_2(cs, org_cs):
scorer = rouge_scorer.RougeScorer(['rouge2'])
scores = scorer.score(org_cs, cs)
if __name__ == '__main__':
# parser = argparse.ArgumentParser(description='Metrics scoring script')
# parser.add_argument('--file_name', type=str, help='File name in Generated_Samples folder.')
# args = parser.parse_args()
bleurt_score = Bleurt(model_path="Elron/bleurt-large-512", cache_path='../../Saved_models', max_length=400, batch_size=128, use_gpu=True, gpu='cuda:1')
argument_score = Argument_scoring(model_path='chkla/roberta-argument', cache_path='../../Saved_models', max_length=400, batch_size=16, use_gpu=True, gpu='cuda:1')
dialog_upvote = Dialog_upvote_scoring(model_path='microsoft/DialogRPT-updown',cache_path='../../Saved_models', max_length=400, batch_size=16, use_gpu=True, gpu='cuda:1')
dialog_width = Dialog_upvote_scoring(model_path='microsoft/DialogRPT-width', cache_path='../../Saved_models', max_length=400, batch_size=16, use_gpu=True, gpu='cuda:1')
dialog_depth = Dialog_upvote_scoring(model_path='microsoft/DialogRPT-depth', cache_path='../../Saved_models', max_length=100, batch_size=16, use_gpu=True, gpu='cuda:2')
toxicity_score = Toxic_HateXplain_scoring(model_path=None, cache_path='../../Saved_models', max_length=400, batch_size=16, use_gpu=True, gpu='cuda:2')
old_counterspeech_score = Argument_scoring(model_path='Hate-speech-CNERG/counterspeech-quality-bert', cache_path='../../Saved_models', max_length=400, batch_size=16, use_gpu=True, gpu='cuda:2')
# new_counterspeech_score = Argument_scoring(model_path='./counterspeech-score_distilbert', cache_path=None, max_length=400, batch_size=16, use_gpu=True, gpu='cuda:2')
counter_argument_score = Counter_argument_scoring(model_path='Hate-speech-CNERG/argument-quality-bert', cache_path='../../Saved_models', max_length=400, batch_size=8, use_gpu=True, gpu='cuda:0')
div_model = SentenceTransformer('sentence-transformers/all-distilroberta-v1', device='cuda:0')
gruen_score = Gruen(use_gpu=True, gpu='cuda:0')
mover_score = MoverScore(use_gpu=True, gpu='cuda:0', n_gram = 1)
# Use glob to get all .json files
#all_files = glob.glob('Generated_Samples/.json')
all_files = [
# 'Generated_Samples/Gab(2000)_on_Gab_Meta-Llama-3-8B-Instruct_20240613-110121_.json',
# 'Generated_Samples/Reddit(2000)_on_Reddit_Meta-Llama-3-8B-Instruct_20240613-104932_.json',
# 'Generated_Samples/Reddit(2000)_on_Reddit_Llama-2-7b-chat-hf_20240613-095055_.json',
# 'Generated_Samples/Gab(2000)_on_Gab_Llama-2-7b-chat-hf_20240613-084254_.json',
# 'Generated_Samples/Reddit(2000)_on_Reddit_DialoGPT-medium_20240613-073806_.json',
# 'Generated_Samples/Gab(2000)_on_Gab_DialoGPT-medium_20240613-073438_.json'
'Generated_Samples/CrowdCounter(2000)_on_CrowdCounter_DialoGPT-medium_20240612-195604_.json'
]
# print(all_files)
# # Define a regular expression for your timestamp pattern
# timestamp_pattern = re.compile(r'_\d{8}-\d{6}_')
# # Use the regular expression to filter the files
# timestamp_files = [f for f in all_files if timestamp_pattern.search(f)]
# non_zeroshot_files = [f for f in timestamp_files if 'Zeroshot' not in f]
# non_typespecific_files = [f for f in non_zeroshot_files if 'Type_specific' not in f]
for file in all_files:
file = file.split('/')[-1]
cs = []
ref_cs = []
hs = []
ref_hs = []
hs_cs = []
with open('Generated_Samples/' + file) as f:
d = json.load(f)
samples = d['samples']
for sample in samples.values():
cs_ = sample['counterspeech_model']
hs_ = sample['hatespeech']
ref_hs_ = sample['org_hate']
ref_cs_ = sample['org_counter']
for x in cs_:
if len(x)>10:
hs_cs_ = '<HATESPEECH> ' + hs_ + ' <COUNTERSPEECH> ' + x
cs.append(clip_after_last_full_stop(x))
hs.append(clip_after_last_full_stop(hs_))
ref_hs.append(clip_after_last_full_stop(ref_hs_))
ref_cs.append(clip_after_last_full_stop(ref_cs_))
hs_cs.append(clip_after_last_full_stop(hs_cs_))
s1 = argument_score.scoring(cs)
s2 = dialog_upvote.scoring(cs, hs)
s3 = dialog_width.scoring(cs, hs)
s4 = dialog_depth.scoring(cs, hs)
s5 = toxicity_score.scoring(cs, hs)
s6 = old_counterspeech_score.scoring(cs)
# s6_dash = new_counterspeech_score.scoring(hs_cs)
s7 = counter_argument_score.scoring(cs, hs)
s8 = score(cs, ref_cs, lang="en", verbose=False)[2].mean().item()
s9 = bleurt_score.score([cs, ref_cs])
s10 = avg_novelty(cs, ref_cs)
bleu, gleu, meteor = nltk_metrics(cs, ref_cs)
embs = div_model.encode(cs)
cosine_scores = util.cos_sim(embs, embs)
n = cosine_scores.shape[0]
total_sim = np.sum(np.array(cosine_scores))
for i in range(n):
total_sim -= cosine_scores[i][i]
if n!=1:
avg_sim = total_sim/(n*(n-1))
div = 1 - avg_sim.item()
dist1 = distinct_n_corpus_level(cs, 1)
dist2 = distinct_n_corpus_level(cs, 2)
ent1 = calculate_ngram_entropy(cs, 1)
ent2 = calculate_ngram_entropy(cs, 2)
sb1 = calculate_self_bleu(cs, 1)
sb2 = calculate_self_bleu(cs, 2)
gruen = gruen_score.score(cs)
movr = mover_score.score(cs, ref_cs)
b2 = calculate_bleu_2(cs, ref_cs)
scorer = new_bleurt_score.BleurtScorer()
# bleurt_out = scorer.score(references=ref_cs, candidates=cs, checkpoint="bleurt-large-512")
bleurt_out = scorer.score(references=ref_cs, candidates=cs)
new_bleurt = np.mean(bleurt_out)
with open('Results/' + file, 'w') as f:
json.dump({
'Argument Score': str(s1),
'Dialog Upvote': str(s2),
'Dialog Width': str(s3),
'Dialog Depth': str(s4),
'Toxicity': str(s5),
'Old Counterspeech Score': str(s6),
# 'New Counterspeech Score': str(s6_dash),
'Counter-Argument Score': str(s7),
'Bert Score': str(s8),
'Bleurt Score': str(s9),
'New Bleurt Score': str(new_bleurt),
'Novelty': str(s10),
'gleu': str(gleu),
'bleu': str(bleu),
'meteor': str(meteor),
'Diversity': str(div),
'dist-1': str(dist1),
'dist-2': str(dist2),
'ent-1': str(ent1),
'ent-2': str(ent2),
'sb-1': str(sb1),
'sb-2': str(sb2),
'b-2': str(b2),
'Gruen': str(gruen),
'Mover': str(movr)
}, f, indent=4)
print("Result saved")