-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathevalho3dv2.py
156 lines (134 loc) · 5.42 KB
/
evalho3dv2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import argparse
from datetime import datetime
import os
import random
from matplotlib import pyplot as plt
import numpy as np
import torch
from libyana.exputils.argutils import save_args
from libyana.modelutils import freeze
from meshreg.datasets import collate
from meshreg.netscripts import evalpass, reloadmodel, get_dataset
plt.switch_backend("agg")
def main(args):
torch.cuda.manual_seed_all(args.manual_seed)
torch.manual_seed(args.manual_seed)
np.random.seed(args.manual_seed)
random.seed(args.manual_seed)
# Initialize hosting
dat_str = args.val_dataset
now = datetime.now()
exp_id = (
f"checkpoints/{dat_str}_mini{args.mini_factor}/"
f"{now.year}_{now.month:02d}_{now.day:02d}/"
f"{args.com}_frac{args.fraction}_mode{args.mode}_bs{args.batch_size}_"
f"objs{args.obj_scale_factor}_objt{args.obj_trans_factor}"
)
# Initialize local checkpoint folder
save_args(args, exp_id, "opt")
result_folder = os.path.join(exp_id, "results")
os.makedirs(result_folder, exist_ok=True)
pyapt_path = os.path.join(result_folder, f"{args.pyapt_id}__{now.strftime('%H_%M_%S')}")
with open(pyapt_path, "a") as t_f:
t_f.write(" ")
val_dataset, input_size = get_dataset.get_dataset(
args.val_dataset,
split=args.val_split,
meta={"version": args.version, "split_mode": "paper"},
use_cache=args.use_cache,
mini_factor=args.mini_factor,
mode=args.mode,
fraction=args.fraction,
no_augm=True,
center_idx=args.center_idx,
scale_jittering=0,
center_jittering=0,
sample_nb=None,
has_dist2strong=True,
)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=int(args.workers),
drop_last=False,
collate_fn=collate.meshreg_collate,
)
opts = reloadmodel.load_opts(args.resume)
model, epoch = reloadmodel.reload_model(args.resume, opts)
if args.render_results:
render_folder = os.path.join(exp_id, f"renders", f"epoch{epoch:04d}")
os.makedirs(render_folder, exist_ok=True)
print(f"Rendering to {render_folder}")
else:
render_folder = None
img_folder = os.path.join(exp_id, "images", f"epoch{epoch:04d}")
os.makedirs(img_folder, exist_ok=True)
freeze.freeze_batchnorm_stats(model) # Freeze batchnorm
fig = plt.figure(figsize=(12, 4))
save_results = {}
save_results["opt"] = dict(vars(args))
save_results["val_losses"] = []
os.makedirs(args.json_folder, exist_ok=True)
json_path = os.path.join(args.json_folder, f"{args.val_split}.json")
evalpass.epoch_pass(
val_loader,
model,
optimizer=None,
scheduler=None,
epoch=epoch,
img_folder=img_folder,
fig=fig,
display_freq=args.display_freq,
dump_results_path=json_path,
render_folder=render_folder,
render_freq=args.render_freq,
true_root=args.true_root,
)
print(f"Saved results for split {args.val_split} to {json_path}")
if __name__ == "__main__":
torch.multiprocessing.set_sharing_strategy("file_system")
# torch.multiprocessing.set_start_method("forkserver")
parser = argparse.ArgumentParser()
parser.add_argument("--com", default="debug/")
# Dataset params
parser.add_argument("--val_dataset", choices=["ho3dv2"], default="ho3dv2")
parser.add_argument("--val_split", default="val")
parser.add_argument("--mini_factor", type=float, default=1)
parser.add_argument("--max_verts", type=int, default=1000)
parser.add_argument("--use_cache", action="store_true")
parser.add_argument("--synth", action="store_true")
parser.add_argument("--version", default=3, type=int)
parser.add_argument("--fraction", type=float, default=1)
parser.add_argument("--mode", choices=["strong", "weak", "full"], default="strong")
# Test options
parser.add_argument("--dump_results", action="store_true")
parser.add_argument("--render_results", action="store_true")
parser.add_argument("--render_freq", type=int, default=10)
# Model params
parser.add_argument("--center_idx", default=9, type=int)
parser.add_argument(
"--true_root", action="store_true", help="Replace predicted wrist position with ground truth root"
)
parser.add_argument("--resume")
# Training params
parser.add_argument("--manual_seed", type=int, default=0)
parser.add_argument("--batch_size", type=int, default=4)
parser.add_argument("--workers", type=int, default=8)
parser.add_argument("--epochs", type=int, default=10000)
parser.add_argument("--freeze_batchnorm", action="store_true")
parser.add_argument("--pyapt_id")
parser.add_argument("--criterion2d", choices=["l2", "l1", "smooth_l1"], default="l2")
# Weighting
parser.add_argument("--obj_trans_factor", type=float, default=1)
parser.add_argument("--obj_scale_factor", type=float, default=1)
# Evaluation params
parser.add_argument("--mask_threshold", type=float, default=0.9)
parser.add_argument("--json_folder", default="jsonres/res")
# Weighting params
parser.add_argument("--display_freq", type=int, default=100)
parser.add_argument("--snapshot", type=int, default=50)
args = parser.parse_args()
for key, val in sorted(vars(args).items(), key=lambda x: x[0]):
print(f"{key}: {val}")
main(args)