-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
111 lines (91 loc) · 4.16 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import numpy as np
import random
from scipy.spatial.distance import euclidean
import matplotlib.pyplot as plt
from sklearn.metrics import silhouette_score
from multiprocessing import Pool
# Load the Iris dataset
data = np.genfromtxt('iris.data', delimiter=',', dtype='float')
data = np.nan_to_num(data)
# Parameters
n = len(data)
k = 3
num_chromosomes = 50
num_generations = 100
def calculate_centroids(chromosome):
clusters = {i: [] for i in range(1, k+1)}
for idx, cluster_id in enumerate(chromosome):
clusters[cluster_id].append(data[idx])
centroids = {i: np.mean(clusters[i], axis=0) for i in clusters if len(clusters[i]) > 0}
return centroids
def advanced_crossover(chromosome1, chromosome2):
centroids1 = calculate_centroids(chromosome1)
centroids2 = calculate_centroids(chromosome2)
child = np.zeros(n, dtype=int)
for i in range(n):
dist_to_c1 = euclidean(data[i], centroids1.get(chromosome1[i], np.zeros(data.shape[1])))
dist_to_c2 = euclidean(data[i], centroids2.get(chromosome2[i], np.zeros(data.shape[1])))
child[i] = chromosome1[i] if dist_to_c1 < dist_to_c2 else chromosome2[i]
return child
def targeted_mutation(chromosome, less_optimal_clusters):
for i in range(n):
if chromosome[i] in less_optimal_clusters:
chromosome[i] = random.randint(1, k)
return chromosome
def initialize_population():
return [np.random.randint(1, k+1, n) for _ in range(num_chromosomes)]
# Objective function
def objective_function(chromosome, data):
clusters = {}
for idx, cluster_id in enumerate(chromosome):
if cluster_id not in clusters:
clusters[cluster_id] = []
clusters[cluster_id].append(data[idx])
intra_cluster_distance = 0
for points in clusters.values():
if len(points) > 1:
for i in range(len(points)):
for j in range(i + 1, len(points)):
intra_cluster_distance += euclidean(points[i], points[j])
return -intra_cluster_distance
# Calculate the average silhouette score for the population
def average_population_silhouette(population):
silhouette_scores = [silhouette_score(data, chrom, metric='euclidean') for chrom in population]
return np.mean(silhouette_scores)
def evaluate_population(population):
with Pool() as pool:
fitness_scores = pool.starmap(objective_function, [(chrom, data) for chrom in population])
return fitness_scores
if __name__ == '__main__':
# Genetic algorithm
population = initialize_population()
overall_silhouette = average_population_silhouette(population)
threshold = overall_silhouette
for generation in range(num_generations):
# Calculate less optimal clusters based on silhouette scores
cluster_silhouette_scores = {} # Implement calculation of silhouette scores per cluster
# Calculate average silhouette score for the current population
less_optimal_clusters = {cluster for cluster, score in cluster_silhouette_scores.items() if score < threshold}
for i in range(0, num_chromosomes, 2):
if i+1 < num_chromosomes:
child = advanced_crossover(population[i], population[i+1])
population.append(targeted_mutation(child, less_optimal_clusters))
# Evaluate fitness and select the best
fitness_scores = evaluate_population(population)
population, fitness_scores = zip(*sorted(zip(population, fitness_scores), key=lambda x: x[1], reverse=True))
population = list(population[:num_chromosomes])
# Best solution and fitness
best_solution = population[0]
best_fitness = fitness_scores[0]
# Print the best solution and fitness
print("Best Solution:", best_solution)
# Visualization
plt.scatter(data[:,0], data[:,1], c=best_solution)
plt.title('Cluster Visualization')
plt.show()
plt.plot(fitness_scores)
plt.title('Fitness Scores Over Generations')
plt.show()
# Silhouette score
score = silhouette_score(data, best_solution, metric='euclidean')
print("Silhouette Score:", score)