-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathreid_engine.py
212 lines (176 loc) · 6.44 KB
/
reid_engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import argparse
import logging
import os
import sys
from pathlib import Path
import cv2
import cupy as cp
import numpy as np
import torch
#from .reid_engine import cv2_converter
from config import cfg
from train_ctl_model import CTLModel
from torch.utils.data import DataLoader,Dataset
from torchvision.datasets.folder import is_image_file
from torchvision import transforms as T
from datasets.transforms import random_erasing
from PIL import Image
from yolo_engine import ImageBreakDown
# def pil_loader_dev(path: str) -> Image.Image:
# with open(path,"rb") as f:
# img = Image.open(f)
# return img.convert("RGB")
def cv2_loader(path: str):
image = cv2.imread(path)
img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
return img
def cv2_converter(cv2_array):
img = cv2.cvtColor(cv2_array, cv2.COLOR_BGR2RGB)
return img
def pil_loader_dev(path: str) ->Image.Image:
with open(path,"rb") as f:
img = Image.open(f)
return img.convert("RGB")
class ImageIndv:
def __init__(self,image_dset,transform = None,loader = cv2_loader):
self.image_dset= [image_dset]
# print(self.image_dset)
self.transform = transform
self.loader = loader
def __len__(self):
return len(self.image_dset)
def __getitem__(self,index):
img_path = self.image_dset[index]
img = self.loader(img_path)
if self.transform is not None:
img = self.transform(img)
img = img.to('cuda:0')
# return img
return (
img,
"",
img_path
)
class ImageIndv_dev:
def __init__(self,image_array,image_name,transform = None):
self.image_dset= [image_array]
self.test_array = image_array
self.image_name = image_name
self.transform = transform
#self.loader = loader
def __len__(self):
return len(self.image_dset)
def __getitem__(self,index):
# print(len(self.image_dset))
try:
img_opener = self.image_dset[index]
img = cv2_converter(img_opener)
name = self.image_name
if self.transform is not None:
img = self.transform(img)
img = img.to('cuda:0')
# return img
return (
img,
"",
name
)
except Exception as e:
print(e)
print(self.image_dset)
class ReidTransforms_Dev():
def __init__(self, cfg):
self.cfg = cfg
def build_transforms(self, is_train=True):
normalize_transform = T.Normalize(mean=self.cfg.INPUT.PIXEL_MEAN, std=self.cfg.INPUT.PIXEL_STD)
if is_train:
transform = T.Compose([
T.ToTensor(),
T.Resize(self.cfg.INPUT.SIZE_TRAIN),
T.RandomHorizontalFlip(p=self.cfg.INPUT.PROB),
T.Pad(self.cfg.INPUT.PADDING),
T.RandomCrop(self.cfg.INPUT.SIZE_TRAIN),
normalize_transform,
random_erasing.RandomErasing(probability=self.cfg.INPUT.RE_PROB, mean=self.cfg.INPUT.PIXEL_MEAN)
])
else:
transform = T.Compose([
T.ToTensor(),
T.Resize(self.cfg.INPUT.SIZE_TEST),
normalize_transform
])
return transform
class Combined_Indv:
def __init__(self,ImageBreak,vals) -> None:
self.det = ImageBreak
self.val = vals
class ReID_Obj_Indv(Combined_Indv):
def __init__(self, ImageBreak, vals,det) -> None:
super().__init__(ImageBreak, vals)
self.detected = det
def change_det(self,det:bool):
self.detected = det
def indv_image_transform(cfg,img,img_name,dclass):
transforms_base = ReidTransforms_Dev(cfg)
val_transforms = transforms_base.build_transforms(is_train=False) # strictly use it for inference
# num_workers = cfg.DATALOADER.NUM_WORKERS
val_set = dclass(img,img_name, transform =val_transforms)
val_loader = DataLoader(
val_set[0],
batch_size = 1,
shuffle = False,
num_workers = 0 # must set this to 0 , not sure why if i readjust workers it will cause the error to appear
)
return val_loader
def _inference(model, batch, use_cuda=True, normalize_with_bn=True):
model.cuda()
model.eval()
with torch.no_grad():
data, _, filename = batch
_, global_feat = model.backbone(
data.cuda() if use_cuda else data
)
if normalize_with_bn:
global_feat = model.bn(global_feat)
return global_feat, filename
def comparison(preprocessed_list,detect_reid_list,threshold=0.65):
for detect_obj in detect_reid_list:
for preprocessed in preprocessed_list:
detect_obj_a1 = detect_obj.val
preprocessed_a1 = preprocessed.val
preprocessed_name = preprocessed.det.name
cosine_vals = cosine_similarity(detect_obj_a1,preprocessed_a1)
# print(cosine_vals[0][0])
if cosine_vals[0][0] > threshold:
detect_obj.det.name = preprocessed_name
detect_obj.det.type = preprocessed.det.type
detect_obj.change_det(True) #so now when we asked for detected it returns us as True
return detect_reid_list
def face_drawer(frame,filterd_list):
for obj in filterd_list:
bound_box = obj.det.bbox
name = obj.det.name
font = cv2.FONT_HERSHEY_COMPLEX
x,y,w,h = int(bound_box[0]),int(bound_box[1]),int(bound_box[2]),int(bound_box[3])
if obj.detected == True:
if obj.det.type == "blacklist":
cv2.rectangle(frame,(x,h),(w,y),(0,0,255),2)
cv2.putText(frame,name,(x+1, h+1),font,1,(0,0,0),2)
elif obj.det.type == "vip":
cv2.rectangle(frame,(x,h),(w,y),(0,255,0),2)
cv2.putText(frame,name,(x+1, h+1),font,1,(0,0,0),2)
else:
cv2.rectangle(frame,(x,h),(w,y),(0,0,0),3)
cv2.putText(frame,name,(x, h+5),font,1,(0,0,0),2)
return frame
#calculating the cosine similiarity
def cosine_similarity(x1,x2):
x1 = x1.detach().cpu().numpy()
x2 = x2.detach().cpu().numpy()
x2 = x2.T
x1 = cp.asarray(x1)
x2 = cp.asarray(x2)
dot_product = cp.dot(x1,x2)
norm_a = cp.linalg.norm(x1)
norm_b = cp.linalg.norm(x2)
return (dot_product/ (norm_a * norm_b))