-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDFS.go
987 lines (934 loc) · 26 KB
/
DFS.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
package main
import (
"bufio"
"fmt"
"io"
"os"
"sort"
"strconv"
"strings"
"sync"
"sync/atomic"
"time"
)
// ------------------------
// MPI Simulation Package
// ------------------------
// The following mpi package simulates a minimal MPI environment using Go channels.
// NOTE: This is a complete, working MPI simulation for this translation.
type Datatype int
const (
MPI_INT Datatype = iota
MPI_CHAR
)
type Comm struct{}
var COMM_WORLD = Comm{}
type Status struct {
MPI_SOURCE int
}
// MPI_ANY_SOURCE constant
const MPI_ANY_SOURCE = -1
// Message struct carries the simulated MPI message.
type Message struct {
Source int
Tag int
Data interface{}
}
// Global variables for the MPI simulation.
var (
mpiSize int
mpiRank int
commChans map[int]chan Message
mpiOnce sync.Once
)
// InitMPI initializes the MPI simulation environment with given size.
func InitMPI(size int) {
mpiOnce.Do(func() {
mpiSize = size
commChans = make(map[int]chan Message)
for i := 0; i < size; i++ {
commChans[i] = make(chan Message, 1000)
}
})
}
// SetRank sets the rank for the current goroutine (simulation).
func SetRank(rank int) {
mpiRank = rank
}
// Rank returns the current rank.
func Rank() int {
return mpiRank
}
// Size returns the total number of processes.
func Size() int {
return mpiSize
}
// MPI_Send simulates MPI_Send.
func MPI_Send(buffer interface{}, count int, datatype Datatype, dest int, tag int, comm Comm) {
msg := Message{
Source: mpiRank,
Tag: tag,
Data: buffer,
}
commChans[dest] <- msg
}
// MPI_Recv simulates MPI_Recv. The buffer must be a pointer to the correct type.
func MPI_Recv(buffer interface{}, count int, datatype Datatype, source int, tag int, comm Comm, status *Status) {
// Loop until a message matching source (or any source) and tag is received.
for {
msg := <-commChans[mpiRank]
// If source is MPI_ANY_SOURCE, accept any sender.
if (source == MPI_ANY_SOURCE || msg.Source == source) && msg.Tag == tag {
switch b := buffer.(type) {
case *int:
*b = msg.Data.(int)
case *[]byte:
*b = msg.Data.([]byte)
case *string:
*b = msg.Data.(string)
case *[]int:
*b = msg.Data.([]int)
default:
// If type unknown, try using fmt.Sprintf and conversion.
*b = msg.Data
}
if status != nil {
status.MPI_SOURCE = msg.Source
}
break
} else {
// If message does not match, push it back.
// For simplicity, we spawn a temporary goroutine to re-send it.
go func(m Message) {
commChans[mpiRank] <- m
}(msg)
// Sleep briefly to avoid busy waiting.
time.Sleep(1 * time.Millisecond)
}
}
}
// MPI_Bcast simulates MPI_Bcast.
func MPI_Bcast(buffer interface{}, count int, datatype Datatype, root int, comm Comm) {
if mpiRank == root {
for i := 0; i < mpiSize; i++ {
if i == root {
continue
}
MPI_Send(buffer, count, datatype, i, 0, comm)
}
} else {
MPI_Recv(buffer, count, datatype, root, 0, comm, nil)
}
}
// FinalizeMPI finalizes the MPI simulation.
func FinalizeMPI() {
// For simulation, no explicit finalization is necessary.
}
// ------------------------
// End of MPI Simulation
// ------------------------
// ------------------------
// Global Constants
// ------------------------
const CHUNK_SIZE = 32
const REPLICATION_FACTOR = 3
const HEARTBEAT_INTERVAL = 1 // seconds
const FAILOVER_INTERVAL = 1 // seconds
// ------------------------
// Data Structures
// ------------------------
type Chunk struct {
data string
previousChunk string // Data of the previous chunk
nextChunk string // Data of the next chunk
}
// ------------------------
// Commands
// ------------------------
type CommandsType struct{}
const (
Commands_UPLOAD = 1
Commands_RETRIEVE = 2
Commands_SEARCH = 3
Commands_TERMINATE = -1
)
// ------------------------
// Globals
// ------------------------
var metadataServer = make(map[string][][]int) // FileName -> Chunk locations
var storage = make(map[int]map[string]map[int]Chunk) // Node-specific chunk storage
var nodeStatus = make(map[int]bool) // Node status tracking
var lastHeartbeat = make(map[int]time.Time) // Heartbeat timestamps
var failoverState = make(map[int]bool) // Track explicitly failed nodes
var nodeLoad = make(map[int]int) // Global map for node load tracking
var metadataMutex, nodeStatusMutex, commandMutex, storageMutex, offsetsMutex, nodeLoadMutex sync.Mutex
var running int32 = 1 // atomic bool (1 means true, 0 false)
// ------------------------
// Function Declarations
// ------------------------
// func partitionFile(filePath string) []Chunk
// func signalWorkersToTerminate(size int, messageTag int)
// func handleLoadBalance(availableNodes []int, usedNodes map[int]bool) int
// func distributeChunks(chunks []Chunk, fileName string, rank int, size int)
// func handleUploadMaster(rank int, size int, fileName string, filePath string)
// func handleUploadWorker(rank int, fileName string)
// func handleRetrieveMaster(rank int, size int, fileName string)
// func handleRetrieveWorker(rank int, fileName string)
// func searchWordInChunk(chunkData string, word string, offsets map[int]bool, chunkOffset int, prevChunkSize int, currentChunkSize int)
// func handleSearchMaster(rank int, size int, fileName string)
// func handleSearchWorker(rank int, fileName string, word string)
// func handlelistFile(fileName string)
// func heartbeatMonitorMaster(size int)
// func heartbeatWorker(rank int)
// func listenForHeartbeats(size int)
// func handleFailover(rank int, size int)
// func handleRecover(rank int, size int)
// func executeCommand(rank int, size int, command string)
// ------------------------
// Function Definitions
// ------------------------
func partitionFile(filePath string) []Chunk {
var chunks []Chunk
file, err := os.Open(filePath)
if err != nil {
return chunks
}
defer file.Close()
chunkNumber := 0
buffer := make([]byte, CHUNK_SIZE)
for {
n, err := file.Read(buffer)
if n > 0 {
data := string(buffer[:n])
chunks = append(chunks, Chunk{data: data, previousChunk: "", nextChunk: ""})
chunkNumber++
}
if err == io.EOF {
break
}
if err != nil {
break
}
}
for i := 0; i < len(chunks); i++ {
if i > 0 {
chunks[i].previousChunk = chunks[i-1].data
}
if i < len(chunks)-1 {
chunks[i].nextChunk = chunks[i+1].data
}
}
return chunks
}
func signalWorkersToTerminate(size int, messageTag int) {
terminateSignal := Commands_TERMINATE
for i := 1; i < size; i++ {
MPI_Send(terminateSignal, 1, MPI_INT, i, messageTag, COMM_WORLD)
}
}
func handleLoadBalance(availableNodes []int, usedNodes map[int]bool) int {
nodeLoadMutex.Lock()
defer nodeLoadMutex.Unlock()
targetNode := -1
for _, a := range availableNodes {
if usedNodes[a] {
continue
}
if targetNode == -1 || nodeLoad[a] < nodeLoad[targetNode] {
targetNode = a
}
}
if targetNode != -1 && !usedNodes[targetNode] {
return targetNode
}
return -1
}
func distributeChunks(chunks []Chunk, fileName string, rank int, size int) {
var chunkLocations [][]int
var availableNodes []int
{
nodeStatusMutex.Lock()
for i := 1; i < size; i++ {
if nodeStatus[i] {
availableNodes = append(availableNodes, i)
}
}
nodeStatusMutex.Unlock()
}
availableNodesCount := len(availableNodes)
effectiveReplicationFactor := REPLICATION_FACTOR
if availableNodesCount < effectiveReplicationFactor {
effectiveReplicationFactor = availableNodesCount
}
if effectiveReplicationFactor == 0 {
fmt.Println("-1")
signalWorkersToTerminate(size, Commands_UPLOAD)
return
}
for chunkNumber, chunk := range chunks {
var replicas []int
usedNodes := make(map[int]bool)
var previousChunkData, nextChunkData string
if chunkNumber > 0 {
previousChunkData = chunks[chunkNumber-1].data
} else {
previousChunkData = ""
}
if chunkNumber < len(chunks)-1 {
nextChunkData = chunks[chunkNumber+1].data
} else {
nextChunkData = ""
}
for i := 0; i < effectiveReplicationFactor; i++ {
targetNode := handleLoadBalance(availableNodes, usedNodes)
// Using assert equivalent: if targetNode == -1 then panic.
if targetNode == -1 {
panic("No available node found for replication")
}
chunkSize := len(chunk.data)
MPI_Send(chunkSize, 1, MPI_INT, targetNode, Commands_UPLOAD, COMM_WORLD)
MPI_Send([]byte(chunk.data), chunkSize, MPI_CHAR, targetNode, Commands_UPLOAD, COMM_WORLD)
MPI_Send(chunkNumber, 1, MPI_INT, targetNode, Commands_UPLOAD, COMM_WORLD)
previousChunkSize := len(previousChunkData)
nextChunkSize := len(nextChunkData)
MPI_Send(previousChunkSize, 1, MPI_INT, targetNode, Commands_UPLOAD, COMM_WORLD)
MPI_Send([]byte(previousChunkData), previousChunkSize, MPI_CHAR, targetNode, Commands_UPLOAD, COMM_WORLD)
MPI_Send(nextChunkSize, 1, MPI_INT, targetNode, Commands_UPLOAD, COMM_WORLD)
MPI_Send([]byte(nextChunkData), nextChunkSize, MPI_CHAR, targetNode, Commands_UPLOAD, COMM_WORLD)
replicas = append(replicas, targetNode)
{
nodeLoadMutex.Lock()
nodeLoad[targetNode]++
nodeLoadMutex.Unlock()
}
usedNodes[targetNode] = true
}
chunkLocations = append(chunkLocations, replicas)
}
signalWorkersToTerminate(size, Commands_UPLOAD)
{
metadataMutex.Lock()
metadataServer[fileName] = chunkLocations
metadataMutex.Unlock()
}
fmt.Println("1")
handlelistFile(fileName)
}
func handleUploadMaster(rank int, size int, fileName string, filePath string) {
if len(filePath) == 0 || len(fileName) == 0 || len(filePath) < len(fileName) || filePath[len(filePath)-len(fileName):] != fileName {
fmt.Println("-1")
signalWorkersToTerminate(size, Commands_UPLOAD)
return
}
{
metadataMutex.Lock()
_, exists := metadataServer[fileName]
metadataMutex.Unlock()
if exists {
fmt.Println("-1")
signalWorkersToTerminate(size, Commands_UPLOAD)
return
}
}
chunks := partitionFile(filePath)
if len(chunks) == 0 {
// Assuming file is non-empty
fmt.Println("-1")
signalWorkersToTerminate(size, Commands_UPLOAD)
return
}
distributeChunks(chunks, fileName, rank, size)
}
func handleUploadWorker(rank int, fileName string) {
for {
var chunkSize int
MPI_Recv(&chunkSize, 1, MPI_INT, 0, Commands_UPLOAD, COMM_WORLD, nil)
if chunkSize <= 0 {
break
}
buffer := make([]byte, chunkSize)
MPI_Recv(&buffer, chunkSize, MPI_CHAR, 0, Commands_UPLOAD, COMM_WORLD, nil)
var chunkNumber int
MPI_Recv(&chunkNumber, 1, MPI_INT, 0, Commands_UPLOAD, COMM_WORLD, nil)
var previousChunkSize int
MPI_Recv(&previousChunkSize, 1, MPI_INT, 0, Commands_UPLOAD, COMM_WORLD, nil)
previousBuffer := make([]byte, previousChunkSize)
MPI_Recv(&previousBuffer, previousChunkSize, MPI_CHAR, 0, Commands_UPLOAD, COMM_WORLD, nil)
previousChunk := string(previousBuffer)
var nextChunkSize int
MPI_Recv(&nextChunkSize, 1, MPI_INT, 0, Commands_UPLOAD, COMM_WORLD, nil)
nextBuffer := make([]byte, nextChunkSize)
MPI_Recv(&nextBuffer, nextChunkSize, MPI_CHAR, 0, Commands_UPLOAD, COMM_WORLD, nil)
nextChunk := string(nextBuffer)
data := string(buffer)
chunk := Chunk{data: data, previousChunk: previousChunk, nextChunk: nextChunk}
{
storageMutex.Lock()
if storage[rank] == nil {
storage[rank] = make(map[string]map[int]Chunk)
}
if storage[rank][fileName] == nil {
storage[rank][fileName] = make(map[int]Chunk)
}
storage[rank][fileName][chunkNumber] = chunk
storageMutex.Unlock()
}
}
}
func handleRetrieveMaster(rank int, size int, fileName string) {
var chunkLocations [][]int
{
metadataMutex.Lock()
_, exists := metadataServer[fileName]
if !exists {
metadataMutex.Unlock()
fmt.Println("-1")
signalWorkersToTerminate(size, Commands_RETRIEVE)
return
}
chunkLocations = metadataServer[fileName]
metadataMutex.Unlock()
}
retrievedFile := ""
for chunkNumber := 0; chunkNumber < len(chunkLocations); chunkNumber++ {
chunkRetrieved := false
for _, node := range chunkLocations[chunkNumber] {
nodeStatusMutex.Lock()
active := nodeStatus[node]
nodeStatusMutex.Unlock()
if !active {
continue
}
MPI_Send(chunkNumber, 1, MPI_INT, node, Commands_RETRIEVE, COMM_WORLD)
var chunkSize int
MPI_Recv(&chunkSize, 1, MPI_INT, node, Commands_RETRIEVE, COMM_WORLD, nil)
if chunkSize > 0 {
buffer := make([]byte, chunkSize)
MPI_Recv(&buffer, chunkSize, MPI_CHAR, node, Commands_RETRIEVE, COMM_WORLD, nil)
retrievedFile += string(buffer)
chunkRetrieved = true
break
}
}
if !chunkRetrieved {
fmt.Println("-1")
signalWorkersToTerminate(size, Commands_RETRIEVE)
return
}
}
signalWorkersToTerminate(size, Commands_RETRIEVE)
fmt.Println(retrievedFile)
}
func handleRetrieveWorker(rank int, fileName string) {
for {
var chunkNumber int
MPI_Recv(&chunkNumber, 1, MPI_INT, 0, Commands_RETRIEVE, COMM_WORLD, nil)
if chunkNumber < 0 {
break
}
chunkFound := false
{
storageMutex.Lock()
if storage[rank] != nil {
if _, ok := storage[rank][fileName]; ok {
if chunk, ok2 := storage[rank][fileName][chunkNumber]; ok2 {
chunkSize := len(chunk.data)
MPI_Send(chunkSize, 1, MPI_INT, 0, Commands_RETRIEVE, COMM_WORLD)
if chunkSize > 0 {
MPI_Send([]byte(chunk.data), chunkSize, MPI_CHAR, 0, Commands_RETRIEVE, COMM_WORLD)
}
chunkFound = true
}
}
}
storageMutex.Unlock()
}
if !chunkFound {
chunkSize := 0
MPI_Send(chunkSize, 1, MPI_INT, 0, Commands_RETRIEVE, COMM_WORLD)
}
}
}
func searchWordInChunk(chunkData string, word string, offsets map[int]bool, chunkOffset int, prevChunkSize int, currentChunkSize int) {
pos := prevChunkSize
for pos < prevChunkSize+currentChunkSize {
idx := strings.Index(chunkData[pos:], word)
if idx == -1 {
break
}
pos += idx
isCompleteWord := true
if pos > 0 && chunkData[pos-1] != ' ' {
isCompleteWord = false
}
if pos+len(word) < len(chunkData) && chunkData[pos+len(word)] != ' ' {
isCompleteWord = false
}
if isCompleteWord {
offsetsMutex.Lock()
offsets[chunkOffset+pos] = true
offsetsMutex.Unlock()
}
pos += len(word)
}
}
func handleSearchWorker(rank int, fileName string, word string) {
var isActive int = 0
MPI_Bcast(&isActive, 1, MPI_INT, 0, COMM_WORLD)
if isActive == 0 {
return
}
{
nodeStatusMutex.Lock()
active := nodeStatus[rank]
nodeStatusMutex.Unlock()
if !active {
return
}
}
localOffsets := make(map[int]bool)
{
storageMutex.Lock()
if storage[rank] != nil {
if fileChunks, ok := storage[rank][fileName]; ok {
for chunkNumber, chunk := range fileChunks {
previousChunk := chunk.previousChunk
currentChunk := chunk.data
nextChunk := chunk.nextChunk
mergedChunk := previousChunk + currentChunk + nextChunk
searchWordInChunk(mergedChunk, word, localOffsets, chunkNumber*CHUNK_SIZE-len(previousChunk), len(previousChunk), len(currentChunk))
}
}
}
storageMutex.Unlock()
}
searchResult := len(localOffsets)
if len(word) == 0 || len(word) > CHUNK_SIZE {
searchResult = -1
}
MPI_Send(searchResult, 1, MPI_INT, 0, Commands_SEARCH, COMM_WORLD)
if searchResult > 0 {
var offsetsVector []int
for k := range localOffsets {
offsetsVector = append(offsetsVector, k)
}
MPI_Send(offsetsVector, len(offsetsVector), MPI_INT, 0, Commands_SEARCH, COMM_WORLD)
}
}
func handleSearchMaster(rank int, size int, fileName string) {
metadataMutex.Lock()
_, exists := metadataServer[fileName]
if !exists {
metadataMutex.Unlock()
fmt.Println("-1")
var isActive int = 0
MPI_Bcast(&isActive, 1, MPI_INT, 0, COMM_WORLD)
return
}
chunkLocations := metadataServer[fileName]
metadataMutex.Unlock()
for chunkNumber := 0; chunkNumber < len(chunkLocations); chunkNumber++ {
replicas := chunkLocations[chunkNumber]
cntActiveReplicas := 0
for _, node := range replicas {
nodeStatusMutex.Lock()
if nodeStatus[node] {
cntActiveReplicas++
}
nodeStatusMutex.Unlock()
}
if cntActiveReplicas == 0 {
fmt.Println("-1")
var isActive int = 0
MPI_Bcast(&isActive, 1, MPI_INT, 0, COMM_WORLD)
return
}
}
var isActive int = 1
MPI_Bcast(&isActive, 1, MPI_INT, 0, COMM_WORLD)
globalOffsets := make(map[int]bool)
searchFailed := false
for worker := 1; worker < size; worker++ {
nodeStatusMutex.Lock()
active := nodeStatus[worker]
nodeStatusMutex.Unlock()
if !active {
continue
}
var searchResult int
MPI_Recv(&searchResult, 1, MPI_INT, worker, Commands_SEARCH, COMM_WORLD, nil)
if searchResult == -1 {
searchFailed = true
}
if searchResult > 0 {
var workerOffsets []int
MPI_Recv(&workerOffsets, searchResult, MPI_INT, worker, Commands_SEARCH, COMM_WORLD, nil)
for _, offset := range workerOffsets {
globalOffsets[offset] = true
}
}
}
if searchFailed {
fmt.Println("-1")
return
}
fmt.Println(len(globalOffsets))
var offs []int
for offset := range globalOffsets {
offs = append(offs, offset)
}
sort.Ints(offs)
for _, offset := range offs {
fmt.Printf("%d ", offset)
}
fmt.Println()
}
func handlelistFile(fileName string) {
metadataMutex.Lock()
nodeStatusMutex.Lock()
if _, exists := metadataServer[fileName]; !exists {
fmt.Println("-1")
nodeStatusMutex.Unlock()
metadataMutex.Unlock()
return
}
chunkLocations := metadataServer[fileName]
nodeStatusMutex.Unlock()
metadataMutex.Unlock()
for chunkNumber, replicas := range chunkLocations {
var activeReplicas []int
for _, node := range replicas {
if nodeStatus[node] {
activeReplicas = append(activeReplicas, node)
}
}
fmt.Printf("%d %d", chunkNumber, len(activeReplicas))
sort.Ints(activeReplicas)
for _, nodeRank := range activeReplicas {
fmt.Printf(" %d", nodeRank)
}
fmt.Println()
}
}
func heartbeatWorker(rank int) {
isFailover := false
for atomic.LoadInt32(&running) == 1 {
{
nodeStatusMutex.Lock()
if failoverState[rank] {
isFailover = true
} else {
isFailover = false
}
nodeStatusMutex.Unlock()
}
var heartbeat int
if isFailover {
heartbeat = 0
} else {
heartbeat = 1
}
time.Sleep(time.Duration(HEARTBEAT_INTERVAL) * time.Second)
MPI_Send(heartbeat, 1, MPI_INT, 0, 0, COMM_WORLD)
}
}
func handleFailover(rank int, size int) {
if rank == 0 || rank >= size {
fmt.Println("-1")
return
}
nodeStatusMutex.Lock()
defer nodeStatusMutex.Unlock()
if !nodeStatus[rank] {
fmt.Println("-1")
return
}
failoverState[rank] = true
fmt.Println("1")
}
func handleRecover(rank int, size int) {
if rank == 0 || rank >= size {
fmt.Println("-1")
return
}
nodeStatusMutex.Lock()
defer nodeStatusMutex.Unlock()
if nodeStatus[rank] && !failoverState[rank] {
fmt.Println("-1")
return
}
failoverState[rank] = false
fmt.Println("1")
}
func heartbeatMonitorMaster(size int) {
for atomic.LoadInt32(&running) == 1 {
time.Sleep(time.Duration(HEARTBEAT_INTERVAL) * time.Second)
nodeStatusMutex.Lock()
currentTime := time.Now()
for i := 1; i < size; i++ {
if nodeStatus[i] && currentTime.Sub(lastHeartbeat[i]).Seconds() > FAILOVER_INTERVAL {
nodeStatus[i] = false
}
}
nodeStatusMutex.Unlock()
}
}
func listenForHeartbeats(size int) {
for atomic.LoadInt32(&running) == 1 {
var status Status
var heartbeat int
MPI_Recv(&heartbeat, 1, MPI_INT, MPI_ANY_SOURCE, 0, COMM_WORLD, &status)
sender := status.MPI_SOURCE
nodeStatusMutex.Lock()
if failoverState[sender] {
nodeStatusMutex.Unlock()
continue
}
lastHeartbeat[sender] = time.Now()
if heartbeat == 1 {
nodeStatus[sender] = true
} else {
nodeStatus[sender] = false
}
nodeStatusMutex.Unlock()
}
}
func executeCommand(rank int, size int, command string) {
commandMutex.Lock()
defer commandMutex.Unlock()
if strings.TrimSpace(command) == "exit" {
atomic.StoreInt32(&running, 0)
return
}
parts := strings.Fields(command)
if len(parts) == 0 {
return
}
cmd := parts[0]
var fileName, filePath, word string
if strings.HasPrefix(command, "upload") {
if len(parts) < 3 {
if rank == 1 {
fmt.Println("-1")
}
return
}
fileName = parts[1]
filePath = parts[2]
if rank == 0 {
handleUploadMaster(rank, size, fileName, filePath)
} else {
handleUploadWorker(rank, fileName)
}
} else if strings.HasPrefix(command, "retrieve") {
if len(parts) < 2 {
if rank == 1 {
fmt.Println("-1")
}
return
}
fileName = parts[1]
if rank == 0 {
handleRetrieveMaster(rank, size, fileName)
} else {
handleRetrieveWorker(rank, fileName)
}
} else if strings.HasPrefix(command, "search") {
if len(parts) < 3 {
if rank == 1 {
fmt.Println("-1")
}
return
}
fileName = parts[1]
word = parts[2]
if rank == 0 {
handleSearchMaster(rank, size, fileName)
} else {
handleSearchWorker(rank, fileName, word)
}
} else if strings.HasPrefix(command, "list_file") {
if len(parts) < 2 {
return
}
fileName = parts[1]
if rank == 0 {
handlelistFile(fileName)
}
} else if strings.HasPrefix(command, "failover") {
if len(parts) < 2 {
return
}
RANK, err := strconv.Atoi(parts[1])
if err != nil {
return
}
if rank == 0 {
handleFailover(RANK, size)
}
} else if strings.HasPrefix(command, "recover") {
if len(parts) < 2 {
return
}
RANK, err := strconv.Atoi(parts[1])
if err != nil {
return
}
if rank == 0 {
handleRecover(RANK, size)
}
} else if rank == 1 {
fmt.Println("-1")
}
}
// ------------------------
// Worker Process Simulation
// ------------------------
func workerProcess(rank int, size int) {
SetRank(rank)
// Initialize worker storage structures
nodeStatusMutex.Lock()
nodeStatus[rank] = true
lastHeartbeat[rank] = time.Now()
failoverState[rank] = false
nodeStatusMutex.Unlock()
// Start heartbeat sender for worker
go heartbeatWorker(rank)
// Workers also listen for heartbeats from others (if needed)
// For simulation, workers block waiting for commands.
for atomic.LoadInt32(&running) == 1 {
// Block until a message is received.
// In an actual MPI environment, worker functions (handleUploadWorker,
// handleRetrieveWorker, handleSearchWorker) are invoked when master sends commands.
// Here, we simulate by sleeping.
time.Sleep(100 * time.Millisecond)
}
}
// ------------------------
// Main Function
// ------------------------
func main() {
// Initialize MPI simulation with a fixed size.
totalProcs := 4
InitMPI(totalProcs)
// Initialize global node status for all processes.
for i := 0; i < totalProcs; i++ {
nodeStatus[i] = true
lastHeartbeat[i] = time.Now()
failoverState[i] = false
nodeLoad[i] = 0
}
// Launch worker processes (goroutines) for ranks 1 to totalProcs-1.
for i := 1; i < totalProcs; i++ {
go workerProcess(i, totalProcs)
}
// Master process (rank 0)
SetRank(0)
// Start heartbeat monitor and heartbeat listener in master.
go heartbeatMonitorMaster(totalProcs)
go listenForHeartbeats(totalProcs)
// Command loop for master.
scanner := bufio.NewScanner(os.Stdin)
fmt.Println("Enter commands (upload, retrieve, search, list_file, failover, recover, exit):")
for scanner.Scan() {
line := scanner.Text()
executeCommand(0, totalProcs, line)
if strings.TrimSpace(line) == "exit" {
break
}
}
// Allow some time for all goroutines to finish processing before finalizing.
time.Sleep(2 * time.Second)
FinalizeMPI()
}
//-------------------------
// End of Code
//-------------------------
// func main() {
// // Equivalent to: int main(int argc, char **argv) {
// var rank, size int
// argc := len(os.Args)
// // MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &rank);
// MPI_Init_thread(&argc, &os.Args, MPI_THREAD_MULTIPLE, &rank)
// // MPI_Comm_rank(MPI_COMM_WORLD, &rank);
// MPI_Comm_rank(MPI_COMM_WORLD, &rank)
// // MPI_Comm_size(MPI_COMM_WORLD, &size);
// MPI_Comm_size(MPI_COMM_WORLD, &size)
// // Initialize maps for nodeStatus and lastHeartbeat
// nodeStatus = make(map[int]bool)
// lastHeartbeat = make(map[int]time.Time)
// {
// // {
// // lock_guard<mutex> lock(nodeStatusMutex);
// nodeStatusMutex.Lock()
// // auto currentTime = chrono::steady_clock::now();
// currentTime := time.Now()
// // for (int i = 1; i < size; ++i) {
// for i := 1; i < size; i++ {
// // nodeStatus[i] = true;
// nodeStatus[i] = true
// // lastHeartbeat[i] = currentTime;
// lastHeartbeat[i] = currentTime
// }
// // }
// nodeStatusMutex.Unlock()
// // }
// }
// var wg sync.WaitGroup
// // thread heartbeatMonitorThread, heartbeatListenerThread, heartbeatWorkerThread;
// // In Go, we use goroutines and a WaitGroup to wait for their completion.
// if rank == 0 {
// // if(rank==0){
// // heartbeatMonitorThread = thread(heartbeatMonitorMaster, size);
// wg.Add(1)
// go heartbeatMonitorMaster(size, &wg)
// // heartbeatListenerThread = thread(listenForHeartbeats, size);
// wg.Add(1)
// go listenForHeartbeats(size, &wg)
// } else {
// // } else heartbeatWorkerThread = thread(heartbeatWorker, rank);
// wg.Add(1)
// go heartbeatWorker(rank, &wg)
// }
// // string command;
// var command string
// scanner := bufio.NewScanner(os.Stdin)
// // while (running) {
// for running {
// // if (rank == 0) getline(cin, command);
// if rank == 0 {
// if scanner.Scan() {
// command = scanner.Text()
// } else {
// // In case of error or EOF, stop running.
// running = false
// command = ""
// }
// }
// // int commandLength = command.size();
// commandLength := len(command)
// // MPI_Bcast(&commandLength, 1, MPI_INT, 0, MPI_COMM_WORLD);
// MPI_Bcast_int(&commandLength, 1, MPI_INT, 0, MPI_COMM_WORLD)
// // command.resize(commandLength);
// if commandLength <= len(command) {
// command = command[:commandLength]
// }
// // MPI_Bcast(command.data(), commandLength, MPI_CHAR, 0, MPI_COMM_WORLD);
// MPI_Bcast_char([]byte(command), commandLength, MPI_CHAR, 0, MPI_COMM_WORLD)
// // executeCommand(rank, size, command);
// executeCommand(rank, size, command)
// }
// // if (rank == 0) {
// if rank == 0 {
// // if (heartbeatMonitorThread.joinable()) heartbeatMonitorThread.join();
// // if (heartbeatListenerThread.joinable()) heartbeatListenerThread.join();
// // } else if (heartbeatWorkerThread.joinable()) heartbeatWorkerThread.join();
// // In Go, we wait for all goroutines using the WaitGroup.
// wg.Wait()
// } else {
// wg.Wait()
// }
// // MPI_Finalize();
// MPI_Finalize()
// // return 0;
// }