-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path.ipynb
432 lines (432 loc) · 27.5 KB
/
.ipynb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
{
"cells": [
{
"cell_type": "code",
"execution_count": 56,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"%matplotlib inline\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(564516, 4)"
]
},
"execution_count": 57,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data = pd.read_csv('uber_rides_data.csv')\n",
"data.shape"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Date/Time</th>\n",
" <th>Lat</th>\n",
" <th>Lon</th>\n",
" <th>Base</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>4/1/2014 0:11:00</td>\n",
" <td>40.7690</td>\n",
" <td>-73.9549</td>\n",
" <td>B02512</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>4/1/2014 0:17:00</td>\n",
" <td>40.7267</td>\n",
" <td>-74.0345</td>\n",
" <td>B02512</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>4/1/2014 0:21:00</td>\n",
" <td>40.7316</td>\n",
" <td>-73.9873</td>\n",
" <td>B02512</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>4/1/2014 0:28:00</td>\n",
" <td>40.7588</td>\n",
" <td>-73.9776</td>\n",
" <td>B02512</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4/1/2014 0:33:00</td>\n",
" <td>40.7594</td>\n",
" <td>-73.9722</td>\n",
" <td>B02512</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Date/Time Lat Lon Base\n",
"0 4/1/2014 0:11:00 40.7690 -73.9549 B02512\n",
"1 4/1/2014 0:17:00 40.7267 -74.0345 B02512\n",
"2 4/1/2014 0:21:00 40.7316 -73.9873 B02512\n",
"3 4/1/2014 0:28:00 40.7588 -73.9776 B02512\n",
"4 4/1/2014 0:33:00 40.7594 -73.9722 B02512"
]
},
"execution_count": 58,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.head()"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(564516, 2)"
]
},
"execution_count": 59,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"clus = data[['Lat','Lon']]\n",
"clus.shape"
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.cluster import KMeans"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,\n",
" n_clusters=6, n_init=10, n_jobs=None, precompute_distances='auto',\n",
" random_state=1234, tol=0.0001, verbose=0)"
]
},
"execution_count": 61,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"kmeans = KMeans(n_clusters=6, max_iter=300, random_state=1234)\n",
"kmeans.fit(clus)"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[ 40.76555831, -73.9728178 ],\n",
" [ 40.7005414 , -74.20167303],\n",
" [ 40.68860278, -73.96555041],\n",
" [ 40.79808351, -73.86879949],\n",
" [ 40.65952565, -73.7740721 ],\n",
" [ 40.73113043, -73.99860971]])"
]
},
"execution_count": 62,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"centroids = kmeans.cluster_centers_\n",
"centroids"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([4])"
]
},
"execution_count": 63,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"new_location = [[40.6556, -73.5631]]\n",
"kmeans.predict(new_location)"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Latitude</th>\n",
" <th>Longitude</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>40.765558</td>\n",
" <td>-73.972818</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>40.700541</td>\n",
" <td>-74.201673</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>40.688603</td>\n",
" <td>-73.965550</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>40.798084</td>\n",
" <td>-73.868799</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>40.659526</td>\n",
" <td>-73.774072</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>40.731130</td>\n",
" <td>-73.998610</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Latitude Longitude\n",
"0 40.765558 -73.972818\n",
"1 40.700541 -74.201673\n",
"2 40.688603 -73.965550\n",
"3 40.798084 -73.868799\n",
"4 40.659526 -73.774072\n",
"5 40.731130 -73.998610"
]
},
"execution_count": 64,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"clocation=pd.DataFrame(centroids, columns=['Latitude','Longitude'])\n",
"clocation"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.collections.PathCollection at 0x26400512da0>"
]
},
"execution_count": 65,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAD8CAYAAABgmUMCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAFXhJREFUeJzt3X2MZfVdx/H3d2axCH3AhWJp6XapsVWrLboj1Ng1StcnfKBFAktrI6uIFY3ralvaNMalMWqxOIwhKdmqGzQtbK2a2gpq0dYYU8FZChQKwnaDutJQ1rFUqLVl7tc/zrlw9joz9/723rkPc9+v5Oaep9/Z75x79nzmPPzuRGYiSVKvZkZdgCRpshgckqQiBockqYjBIUkqYnBIkooYHJKkIgaHJKmIwSFJKmJwSJKKbBp1AcfjtNNOy61bt466DEmaKAcPHjyamc/vdz0TGRxbt25lcXFx1GVI0kSJiH8dxHq8VCVJKmJwSJKKGBySpCIGhySpiMEhSSpicEiSihgckqQiBockqYjBIUkqYnBIkooYHJKkIgaHJKmIwSFJKmJwDMPyMmSWtcms2knSmDE41tvyMuzaBXv29B4emdXyu3YZHpLGjsGx3mZmYPNmWFjoLTzaobGwULWb8SOSNF4m8g85TZQImJ+vhhcWqvf5+Wp6p2Zo7N69+nKSNEIGxzD0Eh6GhqQJYXAMy1rhYWhImiAGxzCtFh6GhqQJYnAMW2d4tAPE0JA0ISJL+xeMgbm5uVxcXBx1Gf3JPPaJqVbL0JC0riLiYGbO9bsen/UchfY9jaaSfh6SNEIGx7B13ghvtar3Xvt5SNKIeY9jmFZ7eqrXfh6SNAYMjmFZ65Fbw0PSBDE4hqGXfhqGh6QJYXCst5LOfYaHpAnQV3BExAHg5fXoKcAXMvPsiDgH2NdeDNibmX++QvvXAr9DdZP+CeCyzDzUT01jp9WCpaXe+2k0w2NpqWo/O7v+dUpSjwbWjyMirgUez8x3RcRJwFcy86mIOAO4G3hhZj7V0eZB4ILMvD8irgTOyczLuv1bE9ePY3m56rNRcuaQaWhIGqhB9eMYyKWqiAjgYuA8gMz8UmP2icBq6ZTAc+vh5wGPDKKesXM8B/8IQ0PSWBrUPY7twKOZ+VB7QkScC/wh8BLgTZ1nG7XLgVsi4n+ALwKvHlA9kqR10rUDYETcFhH3rvC6oLHYpcBNzXaZeXtmvgL4TuAdEXHiCqvfA5yfmWcC+4HfXaOOKyJiMSIWH3vssV5+NknSOuh6xpGZO9aaHxGbgAuBbau0vz8ingS+FVhstHs+8KrMvL2edAD4qzXq2Ed9w31ubs7u1ZI0IoP4ypEdwAOZeaQ9ISLOqgOFiHgJ1ZNXD3e0+y/geRHxsnr8+4H7B1CPJGkdDeIex046LlMBrwHeHhFfBVrAlZl5FCAibgEuz8xHIuJngT+NiBZVkPz0AOqRJK0jv1ZdkqaEX6suSRoJg0OSVMTgkCQVMTgkSUUMDklSEYNDklTE4JAkFTE4JElFDA5JUhGDQ5JUxOCQJBUxOCRJRQwOSVIRg0OSVMTgkKTlZSj9ExOZVbspZHBImm7Ly7BrF+zZ03t4ZFbL79o1leFhcEiabjMzsHkzLCz0Fh7t0FhYqNrNTN9hdBB/OlaSJlcEzM9XwwsL1fv8fDW9UzM0du9efbkNzuCQpF7Cw9B4msEhSbB2eBgaxzA4JKlttfAwNI5hcEhSU2d4tAPE0HhaZOmzy2Ngbm4uFxcXR12GpI0s89gnplqtiQ+NiDiYmXP9rmf6niOTpG7a9zSaSvp5bHAGhyQ1dd4Ib7Wq9177eUwB73FIUttqT0/12s9jShgckgRrP3JreBzD4JCkXvppGB5PMzgkTbeSzn2GB2BwSJp2rRYsLfXeT6MZHktLVfvZ2fWvc4wYHJKm2+ws7N9f9dno9cyhHR5TGBrQ5+O4EXEgIu6qXw9HxF319HMa0++OiNev0v68iLgzIu6NiBsjwiCTNHyzs+WXmyKmMjSgzzOOzLykPRwR1wKP16P3AnOZ+VREnAHcHREfycynGsvPADcCr83MByPiXcBPAX/QT02SpPU1kA6AERHAxcBNAJn5pUZInAis1GPmVOB/M/PBevxjwE8Moh5J0voZVM/x7cCjmflQe0JEnBsR9wGfBt7cPNuoHQVOiIj296ZcBLx4QPVIktZJ10tVEXEb8IIVZr0zMz9cD19KfbbRlpm3A6+IiG8GboyIWzPzy435GRE7gfmIeBbwN0BnuDTruAK4AmDLli3dypYkrZOuwZGZO9aaX9/QvhDYtkr7+yPiSeBbgcWOeZ+kOlshIn4AeNkadewD9kH17bjd6pYkrY9BXKraATyQmUfaEyLirPYTUhHxEuDlwMOdDSPi9Pr9WcBVwA0DqEeStI4GERw76bhMBbyG6kmqu4A/B67MzKMAEXFLRLywXu6tEXE/cA/wkcz8uwHUI0laR/4hJ0maEv4hJ0nSSBgckqQiBockqYjBIUkqYnBIkooYHJKkIgaHJKmIwSFJKmJwSJKKGBySpCIGhySpiMEhSSpicEiSihgc6s3yMpR+k3Jm1U7ShmJwqLvlZdi1C/bs6T08Mqvld+0yPKQNxuBQdzMzsHkzLCz0Fh7t0FhYqNrNuJtJG0nXvzkuEQHz89XwwkL1Pj9fTe/UDI3du1dfTpNnebn6JaDk88yEVgtmZ9evLg2dwaHe9BIehsbG1b5cuXlz759re39YWoL9+w2PDcTgUO/WCg9DY2NrXq6E7p9v5/7g5coNxeBQmdXCw9DY2LxcqQaDQ+U6DyLtA4kHiY3Ny5WqRZY+mz8G5ubmcnFxcdRlKPPYSxCtlgeJabBaOBgaYy8iDmbmXL/r8cKjjk/7INFU0s9Dk6t95rF797GPaBsaU8PgULnOg0Sr9f8PItrYOsNjZsbQmCJeqlIZL1OoycuVE8VLVRq+tcJhtcsX2ri8XDm1DA71ppczimkNj2n8AkgvV041H8dVdyWXoUqe998IprFH9Wr7wzR97lPO4FB3rVZ1kOv13kXzILK0tLG/q2jaelT3crkSDI+NLjMn7rVt27bUkD31VGarVdam1arabXStVubu3ZlQva+2nXpdblxNy8+5gQGLOYBjsGcc6s3xnDFEbNwzjaZp6FHt5Uo19BUcEXEAeHk9egrwhcw8uzF/C/AZYG9mvmeF9mcBNwObgTuBN2XmV/qpSRqJjf4FkF6uVENfwZGZl7SHI+Ja4PGOReaBW9dYxbuB+cy8OSJuAH4GeG8/NUkjs5G/AHJ2trqRX/L3ONrbw9DYcAZyqSoiArgYOK8x7XXAYeDJNdqcB7yhnnQjsBeDQ5NsI38BpJcrVRvUIx3bgUcz8yGAiDgZuAq4eo02p1Jd2nqqHj8CvGhA9Uij0wyPtkkPDamha3BExG0Rce8Krwsai10K3NQYv5rqEtQTa616hWmr9hqKiCsiYjEiFh977LFuZUujY49qbXBdL1Vl5o615kfEJuBCYFtj8rnARRFxDdVN81ZEfDkzr28scxQ4JSI21WcdZwKPrFHHPmAfVN9V1a1uaSRWuhHeHgfPPLQhDOIexw7ggcw80p6QmdvbwxGxF3iiIzTIzIyIjwMXUT1Z9VPAhwdQjzQa9qjWlBhEcOzk2MtUa4qIW4DLM/MRqvsgN0fEbwCfAv5gAPVIw2ePak2RvoMjMy/rMn9vx/j5jeHDwDn91iCNVMkXQILhoYlnz3GpH/ao1hQyOKR+2KNaU8jgkPphj2pNIYND6pc9qjVlJuyPAUiSRs3gkCQVMTgkSUUMDklSEYNDklTE4JAkFTE4JElFDA5JUhGDQ5JUxOCQJBUxOCRJRQwOSVIRg0OSVMTgkCQVMTgkSUUMDklSEYNDklTE4JAkFTE4JElFDA5JUhGDQ5JUxOCQJBUxOCRJRQwOSVIRg0OSVMTgkCQVMTgkSUX6Co6IOBARd9WvhyPiro75WyLiiYh4yyrtfzEiDkVERsRp/dQiSRqOTf00zsxL2sMRcS3weMci88Cta6ziH4GPAp/opw5J0vD0FRxtERHAxcB5jWmvAw4DT67WLjM/VS87iDIkSUMwqHsc24FHM/MhgIg4GbgKuHpA65ckjYmuZxwRcRvwghVmvTMzP1wPXwrc1Jh3NTCfmU8M6mwiIq4ArgDYsmXLQNYpSSrXNTgyc8da8yNiE3AhsK0x+Vzgooi4BjgFaEXElzPz+uMtNDP3AfsA5ubm8njXI0nqzyDucewAHsjMI+0Jmbm9PRwRe4En+gkNSdL4GMQ9jp0ce5lqTRFxS0S8sB7+pYg4ApwJ3BMRvz+AeiRJ6ygyJ++qz9zcXC4uLo66DEmaKBFxMDPn+l2PPcclSUUMDklSEYNDklTE4JAkFTE4JElFDA5JUhGDQ5JUxOCQJBUxOCRJRQwOSVIRg0OSVMTgkCQVMTgkSUUMDklSEYNDklTE4JAkFTE4JElFDA5JUhGDQ5JUxOCQJBUxOCRJRQwOSVIRg0OSVMTgkCQVMTgkSUUMDklSEYNDklTE4JAkFTE4NBrLy5BZ1iazaidppAwODd/yMuzaBXv29B4emdXyu3YZHtKIGRwavpkZ2LwZFhZ6C492aCwsVO1m3G2lUdo06gI0hSJgfr4aXlio3ufnq+mdmqGxe/fqy0kamr6CIyIOAC+vR08BvpCZZzfmbwE+A+zNzPes0P79wBzwVeAO4Ocy86v91KQJ0Ut4GBrSWOorODLzkvZwRFwLPN6xyDxw6xqreD/wk/XwB4DLgff2U5MmyFrhYWhIY2sgl6oiIoCLgfMa014HHAaeXK1dZt7SWP4O4MxB1KMJslp4GBrS2BrUPY7twKOZ+RBARJwMXAV8P/CWbo0j4gTgTcDuNZa5ArgCYMuWLQMoWWOjMzzaAWJoSGMpsssTLRFxG/CCFWa9MzM/XC/zXuBQZl5bj78HuCMzPxgRe4EnVrrH0fg33gc8mZm/3EvRc3Nzubi42MuimiSZxz4x1WoZGtIARcTBzJzrdz1dzzgyc0eXQjYBFwLbGpPPBS6KiGuobpq3IuLLmXn9Cu1/HXg+8HMlhWuDad/TaNqzxzMOaQwN4oH4HcADmXmkPSEzt2fm1szcClwH/OYqoXE58IPApZnZGkAtmkSdN8Jbreq9134ekoZqEPc4dgI39bpwRNwCXJ6ZjwA3AP8KfLK6v86fZea7BlCTJsVqT0/12s9D0tD1HRyZeVmX+Xs7xs9vDNsBcZqt9cit4SGNLQ/cGo1e+mkYHtJYMjg0fCWd+wwPaewYHBq+VguWlnrvp9EMj6Wlqv3s7PrXKWlFBoeGb3YW9u+v+mz0eubQDg9DQxo5g0OjcTwH/whDQxoD/mEDSVIRg0OSVMTgkCQVMTgkSUUMDklSEYNDklTE4JAkFTE4JElFDA5JUhGDQ5JUxOCQJBUxOCRJRQwOSVKRyMxR11AsIh6j+lvl4+A04Oioi+iBdQ6WdQ6WdQ7WanW+JDOf3+/KJzI4xklELGbm3Kjr6MY6B8s6B8s6B2u96/RSlSSpiMEhSSpicPRv36gL6JF1DpZ1DpZ1Dta61uk9DklSEc84JElFDA4gImYj4lMR8dF6/KyIuD0iHoqIAxHxNau0e2VEfDIi7ouIT0fEifX0T0TEv0TEXfXr9Hr6s+r1HarXv3VUdUbEcxr13RURRyPiunr5yyLisca8y9e7zoh4Y0c9rYg4u563ra77UET8XkREPX1zRHysXu/HIuLrRlVnRJwUEX8ZEQ/U2/m3G23GbXuOzf65xvYct/3zhIi4sd4P74+IdzTm/VC9PQ9FxNsb07uud1h1RsSLI+Lj9bT7ImJ3o83eiPiPxvY8v2txmTn1L+BXgA8AH63HPwjsrIdvAH5+hTabgHuAV9XjpwKz9fAngLkV2lwJ3FAP7wQOjLLOjuUOAt9TD18GXD/M7dnR/tuAw43xO4DvAgK4Ffjhevo1wNvr4bcD7x5VncBJwPfVw18D/EOjznHbnmOzf65V5zjtn8AbgJsbn/XDwFZgFvgs8NL6c78b+Jbj+fnXuc4zgO+opz8HeLBR517gLSW1Tf0ZR0ScCfwI8Pv1eADnAR+qF7kReN0KTX8AuCcz7wbIzP/MzOUu/9wF9fqo1//a+t8baZ0R8Y3A6VQHu770UWfTpcBNdfszgOdm5iez2sv/qNG+uT17We+61ZmZX8rMj9fDXwHuBM7stZ5h1dnFKPbPrnWOyf6ZwMkRsQn4WuArwBeBc4BDmXm4/txvBi44zp9/3erMzM9l5p0AmfnfwP3Ai3qtp9PUBwdwHfA2oFWPnwp8ITOfqsePsPIGfhmQEfHXEXFnRLytY/7++rTv1xr/+V4E/DtAvf7H639vlHVC9R/2QH1gbvuJiLgnIj4UES/uscZ+6my6hGcOIC+q27Q12399Zn4OoH4/fYR1Pi0iTgF+DPjbxuRx2Z5t47J/dqsTxmP//BDwJPA54N+A92TmEo1t1tH+eH7+9azzaVFdgvx24PbG5F+st+cfRg+XfKc6OCLiR4HPZ+bB5uQVFl3p0bNNwGuAN9bvr4+I19bz3piZ3wZsr19vKlz3sOps28mx/2E/AmzNzFcCt/HMb6HrWWd7HecCX8rMe4+nfS/Wqc729E1U2/L3MvNwPXmctieM1/65Vp1t47B/ngMsAy8EzgJ+NSJeukb7495v16nO9rqfDfwp8MuZ+cV68nuBbwDOpgqca7vVuKmHn2Mj+27gx+ubQScCz6VK+lMiYlOd7mcCj6zQ9gjw95l5FCAibgG+A/jbzPwPqE4JI+IDVB/mH9VtXgwcqQ8wzwOWVlj3UOqsx18FbGrupJn5n4327wPe3UON/dbZ1nmQOMKxl3ya7R+NiDMy83P1Ja3Pj7DOtn3AQ5l5XXvCmG1Pxmz/XLVOGKv98w3AX2XmV4HPR8Q/AnNUZxvNM552+6M9rndYdR6OiBOoQuP9mfln7QaZ+Wh7OCLeB3y0a4UlN0Q28gv4Xp65CfUnHHsT6soVlv86quvYJ1EF8G1U1yQ3AafVy5xAder45nr8Fzj25uMHR1VnY/5vA1d3tDmjMfx64J/Wu8563gzVweulHdP/GXg1z9wcP7+e/jsce3P8mhHX+RtU/zFnxnV7jtv+udb2HKf9E7gK2F/vgycDnwFeWW/Pw1S/3bdvjr+i5OcfUp1B9cvBdSu0aW7PPdQ319esq/QH2aivjg/opVRP8hyqP6xn1dN/HHhXo81PAvcB91IftOoP6yDVk0z3AQs887TVifX6DtXr/3//UYZVZ2PeYeCbOqb9Vr383cDHO+evY53fywoHAarfmO6lenrlep7puHoq1ZnTQ/X75lHVSfUbYFLddLyrfl0+bttzTPfPFT/3cdo/gWfX8+6jOhi/tbGu86meUvos8M7G9BXXO4o6qS5TZ/25t/fP9i9gfwx8up73FzSCZLWXPcclSUWm+ua4JKmcwSFJKmJwSJKKGBySpCIGhySpiMEhSSpicEiSihgckqQi/wcRkSIg1efBswAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.scatter(clocation['Latitude'],clocation['Longitude'],marker='x', color='R',s=200)"
]
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {},
"outputs": [],
"source": [
"import folium"
]
},
{
"cell_type": "code",
"execution_count": 69,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[40.76555831002299, -73.972817799411], [40.70054140415895, -74.20167302861849], [40.68860278398665, -73.96555040867389], [40.798083507525085, -73.868799493102], [40.65952565241532, -73.77407209883398], [40.73113042965979, -73.9986097081231]]\n"
]
}
],
"source": [
"centroid = clocation.values.tolist()\n",
"print(centroid)\n",
"map = folium.Map(location=[40.79658011772687, -73.87341741832425])\n",
"for point in range(0,len(centroid)):\n",
" folium.Marker(centroid[point], popup = centroid[point]).add_to(map)"
]
},
{
"cell_type": "code",
"execution_count": 68,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div style=\"width:100%;\"><div style=\"position:relative;width:100%;height:0;padding-bottom:60%;\"><iframe src=\"about:blank\" style=\"position:absolute;width:100%;height:100%;left:0;top:0;border:none !important;\" data-html=PCFET0NUWVBFIGh0bWw+CjxoZWFkPiAgICAKICAgIDxtZXRhIGh0dHAtZXF1aXY9ImNvbnRlbnQtdHlwZSIgY29udGVudD0idGV4dC9odG1sOyBjaGFyc2V0PVVURi04IiAvPgogICAgCiAgICAgICAgPHNjcmlwdD4KICAgICAgICAgICAgTF9OT19UT1VDSCA9IGZhbHNlOwogICAgICAgICAgICBMX0RJU0FCTEVfM0QgPSBmYWxzZTsKICAgICAgICA8L3NjcmlwdD4KICAgIAogICAgPHNjcmlwdCBzcmM9Imh0dHBzOi8vY2RuLmpzZGVsaXZyLm5ldC9ucG0vbGVhZmxldEAxLjUuMS9kaXN0L2xlYWZsZXQuanMiPjwvc2NyaXB0PgogICAgPHNjcmlwdCBzcmM9Imh0dHBzOi8vY29kZS5qcXVlcnkuY29tL2pxdWVyeS0xLjEyLjQubWluLmpzIj48L3NjcmlwdD4KICAgIDxzY3JpcHQgc3JjPSJodHRwczovL21heGNkbi5ib290c3RyYXBjZG4uY29tL2Jvb3RzdHJhcC8zLjIuMC9qcy9ib290c3RyYXAubWluLmpzIj48L3NjcmlwdD4KICAgIDxzY3JpcHQgc3JjPSJodHRwczovL2NkbmpzLmNsb3VkZmxhcmUuY29tL2FqYXgvbGlicy9MZWFmbGV0LmF3ZXNvbWUtbWFya2Vycy8yLjAuMi9sZWFmbGV0LmF3ZXNvbWUtbWFya2Vycy5qcyI+PC9zY3JpcHQ+CiAgICA8bGluayByZWw9InN0eWxlc2hlZXQiIGhyZWY9Imh0dHBzOi8vY2RuLmpzZGVsaXZyLm5ldC9ucG0vbGVhZmxldEAxLjUuMS9kaXN0L2xlYWZsZXQuY3NzIi8+CiAgICA8bGluayByZWw9InN0eWxlc2hlZXQiIGhyZWY9Imh0dHBzOi8vbWF4Y2RuLmJvb3RzdHJhcGNkbi5jb20vYm9vdHN0cmFwLzMuMi4wL2Nzcy9ib290c3RyYXAubWluLmNzcyIvPgogICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL21heGNkbi5ib290c3RyYXBjZG4uY29tL2Jvb3RzdHJhcC8zLjIuMC9jc3MvYm9vdHN0cmFwLXRoZW1lLm1pbi5jc3MiLz4KICAgIDxsaW5rIHJlbD0ic3R5bGVzaGVldCIgaHJlZj0iaHR0cHM6Ly9tYXhjZG4uYm9vdHN0cmFwY2RuLmNvbS9mb250LWF3ZXNvbWUvNC42LjMvY3NzL2ZvbnQtYXdlc29tZS5taW4uY3NzIi8+CiAgICA8bGluayByZWw9InN0eWxlc2hlZXQiIGhyZWY9Imh0dHBzOi8vY2RuanMuY2xvdWRmbGFyZS5jb20vYWpheC9saWJzL0xlYWZsZXQuYXdlc29tZS1tYXJrZXJzLzIuMC4yL2xlYWZsZXQuYXdlc29tZS1tYXJrZXJzLmNzcyIvPgogICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL3Jhd2Nkbi5naXRoYWNrLmNvbS9weXRob24tdmlzdWFsaXphdGlvbi9mb2xpdW0vbWFzdGVyL2ZvbGl1bS90ZW1wbGF0ZXMvbGVhZmxldC5hd2Vzb21lLnJvdGF0ZS5jc3MiLz4KICAgIDxzdHlsZT5odG1sLCBib2R5IHt3aWR0aDogMTAwJTtoZWlnaHQ6IDEwMCU7bWFyZ2luOiAwO3BhZGRpbmc6IDA7fTwvc3R5bGU+CiAgICA8c3R5bGU+I21hcCB7cG9zaXRpb246YWJzb2x1dGU7dG9wOjA7Ym90dG9tOjA7cmlnaHQ6MDtsZWZ0OjA7fTwvc3R5bGU+CiAgICAKICAgICAgICAgICAgPG1ldGEgbmFtZT0idmlld3BvcnQiIGNvbnRlbnQ9IndpZHRoPWRldmljZS13aWR0aCwKICAgICAgICAgICAgICAgIGluaXRpYWwtc2NhbGU9MS4wLCBtYXhpbXVtLXNjYWxlPTEuMCwgdXNlci1zY2FsYWJsZT1ubyIgLz4KICAgICAgICAgICAgPHN0eWxlPgogICAgICAgICAgICAgICAgI21hcF9hY2ZhMTc5MjMxNWE0ZDAxOWQ1YWM1M2Q5ZTVhNGE5ZCB7CiAgICAgICAgICAgICAgICAgICAgcG9zaXRpb246IHJlbGF0aXZlOwogICAgICAgICAgICAgICAgICAgIHdpZHRoOiAxMDAuMCU7CiAgICAgICAgICAgICAgICAgICAgaGVpZ2h0OiAxMDAuMCU7CiAgICAgICAgICAgICAgICAgICAgbGVmdDogMC4wJTsKICAgICAgICAgICAgICAgICAgICB0b3A6IDAuMCU7CiAgICAgICAgICAgICAgICB9CiAgICAgICAgICAgIDwvc3R5bGU+CiAgICAgICAgCjwvaGVhZD4KPGJvZHk+ICAgIAogICAgCiAgICAgICAgICAgIDxkaXYgY2xhc3M9ImZvbGl1bS1tYXAiIGlkPSJtYXBfYWNmYTE3OTIzMTVhNGQwMTlkNWFjNTNkOWU1YTRhOWQiID48L2Rpdj4KICAgICAgICAKPC9ib2R5Pgo8c2NyaXB0PiAgICAKICAgIAogICAgICAgICAgICB2YXIgbWFwX2FjZmExNzkyMzE1YTRkMDE5ZDVhYzUzZDllNWE0YTlkID0gTC5tYXAoCiAgICAgICAgICAgICAgICAibWFwX2FjZmExNzkyMzE1YTRkMDE5ZDVhYzUzZDllNWE0YTlkIiwKICAgICAgICAgICAgICAgIHsKICAgICAgICAgICAgICAgICAgICBjZW50ZXI6IFs0MC43OTY1ODAxMTc3MjY4NywgLTczLjg3MzQxNzQxODMyNDI1XSwKICAgICAgICAgICAgICAgICAgICBjcnM6IEwuQ1JTLkVQU0czODU3LAogICAgICAgICAgICAgICAgICAgIHpvb206IDEwLAogICAgICAgICAgICAgICAgICAgIHpvb21Db250cm9sOiB0cnVlLAogICAgICAgICAgICAgICAgICAgIHByZWZlckNhbnZhczogZmFsc2UsCiAgICAgICAgICAgICAgICB9CiAgICAgICAgICAgICk7CgogICAgICAgICAgICAKCiAgICAgICAgCiAgICAKICAgICAgICAgICAgdmFyIHRpbGVfbGF5ZXJfMmM4ZWVhN2Y5MmQ1NGU4Y2E5NGI4ZDYyN2Q0MGQzY2IgPSBMLnRpbGVMYXllcigKICAgICAgICAgICAgICAgICJodHRwczovL3tzfS50aWxlLm9wZW5zdHJlZXRtYXAub3JnL3t6fS97eH0ve3l9LnBuZyIsCiAgICAgICAgICAgICAgICB7ImF0dHJpYnV0aW9uIjogIkRhdGEgYnkgXHUwMDI2Y29weTsgXHUwMDNjYSBocmVmPVwiaHR0cDovL29wZW5zdHJlZXRtYXAub3JnXCJcdTAwM2VPcGVuU3RyZWV0TWFwXHUwMDNjL2FcdTAwM2UsIHVuZGVyIFx1MDAzY2EgaHJlZj1cImh0dHA6Ly93d3cub3BlbnN0cmVldG1hcC5vcmcvY29weXJpZ2h0XCJcdTAwM2VPRGJMXHUwMDNjL2FcdTAwM2UuIiwgImRldGVjdFJldGluYSI6IGZhbHNlLCAibWF4TmF0aXZlWm9vbSI6IDE4LCAibWF4Wm9vbSI6IDE4LCAibWluWm9vbSI6IDAsICJub1dyYXAiOiBmYWxzZSwgIm9wYWNpdHkiOiAxLCAic3ViZG9tYWlucyI6ICJhYmMiLCAidG1zIjogZmFsc2V9CiAgICAgICAgICAgICkuYWRkVG8obWFwX2FjZmExNzkyMzE1YTRkMDE5ZDVhYzUzZDllNWE0YTlkKTsKICAgICAgICAKICAgIAogICAgICAgICAgICB2YXIgbWFya2VyX2ZmZDc0M2FlMjBmODQzMDY5YjU5MjUzODQ0MTI3NzRhID0gTC5tYXJrZXIoCiAgICAgICAgICAgICAgICBbNDAuNzY1NTU4MzEwMDIyOTksIC03My45NzI4MTc3OTk0MTFdLAogICAgICAgICAgICAgICAge30KICAgICAgICAgICAgKS5hZGRUbyhtYXBfYWNmYTE3OTIzMTVhNGQwMTlkNWFjNTNkOWU1YTRhOWQpOwogICAgICAgIAogICAgCiAgICAgICAgdmFyIHBvcHVwX2QzYjZlMDY5Zjg0NTQ2OGFhZWE2MDc0NWJhZjEzNzdhID0gTC5wb3B1cCh7Im1heFdpZHRoIjogIjEwMCUifSk7CgogICAgICAgIAogICAgICAgICAgICB2YXIgaHRtbF9hZTY3NGE2MjdhNTU0ZjliOTViZDkyYTZhNTljZTRiNiA9ICQoYDxkaXYgaWQ9Imh0bWxfYWU2NzRhNjI3YTU1NGY5Yjk1YmQ5MmE2YTU5Y2U0YjYiIHN0eWxlPSJ3aWR0aDogMTAwLjAlOyBoZWlnaHQ6IDEwMC4wJTsiPls0MC43NjU1NTgzMTAwMjI5OSwgLTczLjk3MjgxNzc5OTQxMV08L2Rpdj5gKVswXTsKICAgICAgICAgICAgcG9wdXBfZDNiNmUwNjlmODQ1NDY4YWFlYTYwNzQ1YmFmMTM3N2Euc2V0Q29udGVudChodG1sX2FlNjc0YTYyN2E1NTRmOWI5NWJkOTJhNmE1OWNlNGI2KTsKICAgICAgICAKCiAgICAgICAgbWFya2VyX2ZmZDc0M2FlMjBmODQzMDY5YjU5MjUzODQ0MTI3NzRhLmJpbmRQb3B1cChwb3B1cF9kM2I2ZTA2OWY4NDU0NjhhYWVhNjA3NDViYWYxMzc3YSkKICAgICAgICA7CgogICAgICAgIAogICAgCiAgICAKICAgICAgICAgICAgdmFyIG1hcmtlcl9iZDEzNzVmNThkMmE0OGM1YTM4ZjQ0NDc5MDNmYTBjMCA9IEwubWFya2VyKAogICAgICAgICAgICAgICAgWzQwLjcwMDU0MTQwNDE1ODk1LCAtNzQuMjAxNjczMDI4NjE4NDldLAogICAgICAgICAgICAgICAge30KICAgICAgICAgICAgKS5hZGRUbyhtYXBfYWNmYTE3OTIzMTVhNGQwMTlkNWFjNTNkOWU1YTRhOWQpOwogICAgICAgIAogICAgCiAgICAgICAgdmFyIHBvcHVwX2ZjMDcxYWMyOTRjNjQwMDI5OTI3ZjNlN2RhNTU3MzMwID0gTC5wb3B1cCh7Im1heFdpZHRoIjogIjEwMCUifSk7CgogICAgICAgIAogICAgICAgICAgICB2YXIgaHRtbF8zYjA0MzU4NzBmZTc0MzM4ODZiMGQwMWM3M2QwYzIzMSA9ICQoYDxkaXYgaWQ9Imh0bWxfM2IwNDM1ODcwZmU3NDMzODg2YjBkMDFjNzNkMGMyMzEiIHN0eWxlPSJ3aWR0aDogMTAwLjAlOyBoZWlnaHQ6IDEwMC4wJTsiPls0MC43MDA1NDE0MDQxNTg5NSwgLTc0LjIwMTY3MzAyODYxODQ5XTwvZGl2PmApWzBdOwogICAgICAgICAgICBwb3B1cF9mYzA3MWFjMjk0YzY0MDAyOTkyN2YzZTdkYTU1NzMzMC5zZXRDb250ZW50KGh0bWxfM2IwNDM1ODcwZmU3NDMzODg2YjBkMDFjNzNkMGMyMzEpOwogICAgICAgIAoKICAgICAgICBtYXJrZXJfYmQxMzc1ZjU4ZDJhNDhjNWEzOGY0NDQ3OTAzZmEwYzAuYmluZFBvcHVwKHBvcHVwX2ZjMDcxYWMyOTRjNjQwMDI5OTI3ZjNlN2RhNTU3MzMwKQogICAgICAgIDsKCiAgICAgICAgCiAgICAKICAgIAogICAgICAgICAgICB2YXIgbWFya2VyX2Q3MDVjZDIxNmVlYzQ4Yjk4ZDcyNDRhZWI0M2FiNDExID0gTC5tYXJrZXIoCiAgICAgICAgICAgICAgICBbNDAuNjg4NjAyNzgzOTg2NjUsIC03My45NjU1NTA0MDg2NzM4OV0sCiAgICAgICAgICAgICAgICB7fQogICAgICAgICAgICApLmFkZFRvKG1hcF9hY2ZhMTc5MjMxNWE0ZDAxOWQ1YWM1M2Q5ZTVhNGE5ZCk7CiAgICAgICAgCiAgICAKICAgICAgICB2YXIgcG9wdXBfYWRmOTc4ZjFiMzllNDA3NTgxMDYwMGQ0MzhiODUzNGIgPSBMLnBvcHVwKHsibWF4V2lkdGgiOiAiMTAwJSJ9KTsKCiAgICAgICAgCiAgICAgICAgICAgIHZhciBodG1sX2U5MThjOTMwYTYzMjQ1YjliM2Y2MzQzZmU2MWQwNWI5ID0gJChgPGRpdiBpZD0iaHRtbF9lOTE4YzkzMGE2MzI0NWI5YjNmNjM0M2ZlNjFkMDViOSIgc3R5bGU9IndpZHRoOiAxMDAuMCU7IGhlaWdodDogMTAwLjAlOyI+WzQwLjY4ODYwMjc4Mzk4NjY1LCAtNzMuOTY1NTUwNDA4NjczODldPC9kaXY+YClbMF07CiAgICAgICAgICAgIHBvcHVwX2FkZjk3OGYxYjM5ZTQwNzU4MTA2MDBkNDM4Yjg1MzRiLnNldENvbnRlbnQoaHRtbF9lOTE4YzkzMGE2MzI0NWI5YjNmNjM0M2ZlNjFkMDViOSk7CiAgICAgICAgCgogICAgICAgIG1hcmtlcl9kNzA1Y2QyMTZlZWM0OGI5OGQ3MjQ0YWViNDNhYjQxMS5iaW5kUG9wdXAocG9wdXBfYWRmOTc4ZjFiMzllNDA3NTgxMDYwMGQ0MzhiODUzNGIpCiAgICAgICAgOwoKICAgICAgICAKICAgIAogICAgCiAgICAgICAgICAgIHZhciBtYXJrZXJfOWNmYjk3OGQ4MTkxNGRhYjlkNWU3MzkzZTdiOTY1NmEgPSBMLm1hcmtlcigKICAgICAgICAgICAgICAgIFs0MC43OTgwODM1MDc1MjUwODUsIC03My44Njg3OTk0OTMxMDJdLAogICAgICAgICAgICAgICAge30KICAgICAgICAgICAgKS5hZGRUbyhtYXBfYWNmYTE3OTIzMTVhNGQwMTlkNWFjNTNkOWU1YTRhOWQpOwogICAgICAgIAogICAgCiAgICAgICAgdmFyIHBvcHVwXzFhY2E2YTMwZGQ4YzQ1OTc5NjcxZDlhOTFlNjMxZDYxID0gTC5wb3B1cCh7Im1heFdpZHRoIjogIjEwMCUifSk7CgogICAgICAgIAogICAgICAgICAgICB2YXIgaHRtbF85MjVlYTAxYzM3OWU0ODJjOTVjZWQ4OWNhNGIwZGI2NiA9ICQoYDxkaXYgaWQ9Imh0bWxfOTI1ZWEwMWMzNzllNDgyYzk1Y2VkODljYTRiMGRiNjYiIHN0eWxlPSJ3aWR0aDogMTAwLjAlOyBoZWlnaHQ6IDEwMC4wJTsiPls0MC43OTgwODM1MDc1MjUwODUsIC03My44Njg3OTk0OTMxMDJdPC9kaXY+YClbMF07CiAgICAgICAgICAgIHBvcHVwXzFhY2E2YTMwZGQ4YzQ1OTc5NjcxZDlhOTFlNjMxZDYxLnNldENvbnRlbnQoaHRtbF85MjVlYTAxYzM3OWU0ODJjOTVjZWQ4OWNhNGIwZGI2Nik7CiAgICAgICAgCgogICAgICAgIG1hcmtlcl85Y2ZiOTc4ZDgxOTE0ZGFiOWQ1ZTczOTNlN2I5NjU2YS5iaW5kUG9wdXAocG9wdXBfMWFjYTZhMzBkZDhjNDU5Nzk2NzFkOWE5MWU2MzFkNjEpCiAgICAgICAgOwoKICAgICAgICAKICAgIAogICAgCiAgICAgICAgICAgIHZhciBtYXJrZXJfYzI1MzlkYjlmMWY1NDA5M2FkZmUxNGEzYmFhMzg4OTcgPSBMLm1hcmtlcigKICAgICAgICAgICAgICAgIFs0MC42NTk1MjU2NTI0MTUzMiwgLTczLjc3NDA3MjA5ODgzMzk4XSwKICAgICAgICAgICAgICAgIHt9CiAgICAgICAgICAgICkuYWRkVG8obWFwX2FjZmExNzkyMzE1YTRkMDE5ZDVhYzUzZDllNWE0YTlkKTsKICAgICAgICAKICAgIAogICAgICAgIHZhciBwb3B1cF83ZTRmY2IyODI5YmU0OTRmYTRkZGJkYWNmNGMyZmRjOCA9IEwucG9wdXAoeyJtYXhXaWR0aCI6ICIxMDAlIn0pOwoKICAgICAgICAKICAgICAgICAgICAgdmFyIGh0bWxfNGMyNjk4MDFjZDY4NDhjMzlhMTZlMTc2OTg1MTU0ZmQgPSAkKGA8ZGl2IGlkPSJodG1sXzRjMjY5ODAxY2Q2ODQ4YzM5YTE2ZTE3Njk4NTE1NGZkIiBzdHlsZT0id2lkdGg6IDEwMC4wJTsgaGVpZ2h0OiAxMDAuMCU7Ij5bNDAuNjU5NTI1NjUyNDE1MzIsIC03My43NzQwNzIwOTg4MzM5OF08L2Rpdj5gKVswXTsKICAgICAgICAgICAgcG9wdXBfN2U0ZmNiMjgyOWJlNDk0ZmE0ZGRiZGFjZjRjMmZkYzguc2V0Q29udGVudChodG1sXzRjMjY5ODAxY2Q2ODQ4YzM5YTE2ZTE3Njk4NTE1NGZkKTsKICAgICAgICAKCiAgICAgICAgbWFya2VyX2MyNTM5ZGI5ZjFmNTQwOTNhZGZlMTRhM2JhYTM4ODk3LmJpbmRQb3B1cChwb3B1cF83ZTRmY2IyODI5YmU0OTRmYTRkZGJkYWNmNGMyZmRjOCkKICAgICAgICA7CgogICAgICAgIAogICAgCiAgICAKICAgICAgICAgICAgdmFyIG1hcmtlcl85ZWZlYWU3NmFiNjU0ZDMxYTEzNDY0ZmFlYzQ0NGJkYiA9IEwubWFya2VyKAogICAgICAgICAgICAgICAgWzQwLjczMTEzMDQyOTY1OTc5LCAtNzMuOTk4NjA5NzA4MTIzMV0sCiAgICAgICAgICAgICAgICB7fQogICAgICAgICAgICApLmFkZFRvKG1hcF9hY2ZhMTc5MjMxNWE0ZDAxOWQ1YWM1M2Q5ZTVhNGE5ZCk7CiAgICAgICAgCiAgICAKICAgICAgICB2YXIgcG9wdXBfOGNiYTVhZmFlYjAyNGEzMzk5NGM2ZWMyOGM2OGU0YzIgPSBMLnBvcHVwKHsibWF4V2lkdGgiOiAiMTAwJSJ9KTsKCiAgICAgICAgCiAgICAgICAgICAgIHZhciBodG1sXzU0OTc5Nzc4YWM0OTRhNmNhM2E3ZWJjZmMwYzJhNWM5ID0gJChgPGRpdiBpZD0iaHRtbF81NDk3OTc3OGFjNDk0YTZjYTNhN2ViY2ZjMGMyYTVjOSIgc3R5bGU9IndpZHRoOiAxMDAuMCU7IGhlaWdodDogMTAwLjAlOyI+WzQwLjczMTEzMDQyOTY1OTc5LCAtNzMuOTk4NjA5NzA4MTIzMV08L2Rpdj5gKVswXTsKICAgICAgICAgICAgcG9wdXBfOGNiYTVhZmFlYjAyNGEzMzk5NGM2ZWMyOGM2OGU0YzIuc2V0Q29udGVudChodG1sXzU0OTc5Nzc4YWM0OTRhNmNhM2E3ZWJjZmMwYzJhNWM5KTsKICAgICAgICAKCiAgICAgICAgbWFya2VyXzllZmVhZTc2YWI2NTRkMzFhMTM0NjRmYWVjNDQ0YmRiLmJpbmRQb3B1cChwb3B1cF84Y2JhNWFmYWViMDI0YTMzOTk0YzZlYzI4YzY4ZTRjMikKICAgICAgICA7CgogICAgICAgIAogICAgCjwvc2NyaXB0Pg== onload=\"this.contentDocument.open();this.contentDocument.write(atob(this.getAttribute('data-html')));this.contentDocument.close();\" allowfullscreen webkitallowfullscreen mozallowfullscreen></iframe></div></div>"
],
"text/plain": [
"<folium.folium.Map at 0x26401636048>"
]
},
"execution_count": 68,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"map"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}