-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathrecommender_final_toy_dataset.py
171 lines (120 loc) · 4.23 KB
/
recommender_final_toy_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#Setting up prerequisites
from mf import MF
import pandas as pd
import numpy as np
import math
import re
import sklearn
from scipy.sparse import csr_matrix
import matplotlib.pyplot as plt
import seaborn as sns
from surprise import Reader, Dataset, SVD, evaluate
sns.set_style("darkgrid")
from cvxpy import *
from numpy import matrix
print("Setup Complete\n")
# df1 = pd.read_csv('netflix-prize-data/toy_combined_data.txt', header = None, names = ['Cust_Id', 'Rating', 'Date'], usecols = [0,1,2])
# df1['Rating'] = df1['Rating'].astype(float)
# df1['Date'] = df1['Date'].astype(str)
# df1['Date'] = df1['Date'].map( lambda s : (s[:4])+(s[5:7])+(s[8:]))
# df1['Date'] = df1['Date'].astype(float)
# print('Dataset 1 shape: {}'.format(df1.shape))
# print('-Dataset examples-')
# print(df1.iloc[::100, :])
# print(df1['Date'].dtype)
# df = df1
# #Seeing the distribution of ratings given by the users
# print("See Overview of the Data")
# p = df.groupby('Rating')['Rating'].agg(['count'])
# # get movie count
# movie_count = df.isnull().sum()[1]
# # get customer count
# cust_count = df['Cust_Id'].nunique() - movie_count
# # get rating count
# rating_count = df['Cust_Id'].count() - movie_count
# ax = p.plot(kind = 'barh', legend = False, figsize = (15,10))
# plt.title('Total pool: {:,} Movies, {:,} customers, {:,} ratings given'.format(movie_count, cust_count, rating_count), fontsize=20)
# plt.axis('off')
# for i in range(1,6):
# ax.text(p.iloc[i-1][0]/4, i-1, 'Rated {}: {:.0f}%'.format(i, p.iloc[i-1][0]*100 / p.sum()[0]), color = 'white', weight = 'bold')
# #Adding movie IDs to the dataset
# movie_np = []
# movie_id = 0
# for x in range(df.shape[0]):
# if(np.isnan(df.iloc[x]['Rating'])):
# movie_id = movie_id+1
# movie_np = np.append(movie_np,movie_id)
# #print(movie_np)
# #print(len(movie_np))
# df['Movie_Id'] = movie_np.astype(int)
# print("Movie IDs extracted from the extra rows given")
# # remove the extra Movie ID rows
# df = df[pd.notnull(df['Rating'])]
# df['Cust_Id'] = df['Cust_Id'].astype(int)
# print('-Dataset examples-')
# print(df.iloc[::100, :])
# print("\n\nThese are the final datatypes of the dataset")
# print(df.dtypes)
# #Creating Data Matrix
# df_matrix=pd.pivot_table(df,values='Rating',index='Cust_Id',columns='Movie_Id')
# print(df_matrix.shape)
# #Loading the Movie ID- Movie Title Mapping File
# df_title = pd.read_csv('netflix-prize-data/movie_titles.csv', encoding = "ISO-8859-1", header = None, names = ['Movie_Id', 'Year', 'Name'])
# df_title.set_index('Movie_Id', inplace = True)
# print("See some Movie ID- Movie Title Mapping : \n")
# print (df_title.head(8))
# print("\n\nData Cleaning Complete.\n See head of the Data Matrix:\n")
# print(df_matrix.head())
# n_movies = movie_count
# n_customers = cust_count
# print("\nNum of movies =", movie_count)
# print("Num of users =", cust_count)
# #Choosing the number of latent attributes
# n_attr= 100*1000000
# #print(type(n_attr),type(n_movies), type(n_customers))
# Q = Variable((n_attr,n_movies))
# P = Variable((n_attr, n_customers))
# acq_data = df_matrix.fillna(0.0)
# print(acq_data.head())
#This cell works on Toy Dataset
#The next cell is for real data
R = np.array([
[5, 3, 0, 1],
[4, 0, 0, 1],
[1, 1, 0, 5],
[1, 0, 0, 4],
[0, 1, 5, 4],
])
R1= np.array([
[5, 3, 0, 1],
[4, 0, 0, 1],
[1, 1, 0, 5],
[1, 0, 0, 4],
[0, 1, 5, 4],
])
#Set the number of values to replace. For example 20%:
prop = int(R.size * 0.2)
#Randomly choose indices of the numpy array:
i = [np.random.choice(range(R.shape[0])) for _ in range(prop)]
j = [np.random.choice(range(R.shape[1])) for _ in range(prop)]
#Change values with 0
R[i,j] = 0
print("Original:\n",R1)
print("Test Set:\n",R)
R=np.rint(R)
from sklearn.metrics import mean_squared_error
mse = mean_squared_error(R, R1)
print("MSE=",mse**0.5)
print("\nTraining ...\n")
mf = MF(R, K=10000, alpha=0.01, beta=0.01, iterations=10000)
training_process = mf.train()
L=np.rint(mf.full_matrix())
print("Learnt=\n",L)
print("\nFinding Error on test set...\n")
msef=0.0
for i1 in range(len(i)):
for i2 in range(len(j)):
if R1.item(i[i1],j[i2])!=0:
msef = msef + (R1.item((i[i1],j[i2]))-(L).item((i[i1],j[i2])))**2
msef = (msef/(len(j)*len(i)))
print("RMSE f=",msef**0.5)