-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtests.py
176 lines (141 loc) · 6.77 KB
/
tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import math
import unittest
from unittest import mock
from types import SimpleNamespace
import numpy as np
from shallow_ocean_waves import *
def create_new_test_array():
return np.array([[1, 4, 8, 2, 4, 8, 1],
[4, 8, 1, 5, 8, 5, 5],
[2, 3, 0, 0, 1, 9, 1],
[8, 2, 1, 8, 0, 2, 4],
[1, 1, 7, 1, 5, 0, 5],
[2, 3, 0, 0, 7, 0, 7]])
class TestStartingArrays(unittest.TestCase):
def test_grid_shapes(self):
u, v, h, speed = create_grids(10)
self.assertEqual((12, 12), h.shape)
self.assertEqual((12, 13), u.shape)
self.assertEqual((13, 12), v.shape)
self.assertEqual((10, 10), speed.shape)
class TestTimeDerivatives(unittest.TestCase):
def setUp(self):
self.rand_h = np.random.rand(6, 7)
self.rand_u = np.random.rand(6, 8)
self.rand_v = np.random.rand(7, 7)
def compute_time_derivatives(self, u=np.zeros((6, 8)), v=np.zeros((7, 7)),
h=np.zeros((6, 7)), gravity=0.0, dx=1.0,
dy=1.0, drag=0.0, h_background=1.0):
constants = SimpleNamespace(gravity=gravity, dx=dx, dy=dy, drag=drag,
h_background=h_background)
return compute_time_derivatives(u, v, h, constants)
def test_dh_dx_term(self):
''' Create a situation where du_dt = dh_dx * gravity, in order to
test this term '''
h = create_new_test_array()
gravity = 2
du_dt, _, _ = self.compute_time_derivatives(h=h, gravity=gravity)
expected = np.array([[ -3, -4, 6, -2, -4, 7],
[ -4, 7, -4, -3, 3, 0],
[ -1, 3, 0, -1, -8, 8],
[ 6, 1, -7, 8, -2, -2],
[ 0, -6, 6, -4, 5, -5],
[ -1, 3, 0, -7, 7, -7]]) * gravity
np.testing.assert_equal(du_dt, expected)
def test_compute_time_derivatives_does_not_change_input(self):
rand_h_copy = np.array(self.rand_h, copy=True)
rand_u_copy = np.array(self.rand_u, copy=True)
rand_v_copy = np.array(self.rand_v, copy=True)
self.compute_time_derivatives(u=self.rand_u, v=self.rand_v,
h=self.rand_h, gravity=1.0, drag=1.0)
np.testing.assert_equal(rand_h_copy, self.rand_h)
np.testing.assert_equal(rand_u_copy, self.rand_u)
np.testing.assert_equal(rand_v_copy, self.rand_v)
def test_compute_time_derivatives_shape(self):
r = self.compute_time_derivatives(u=self.rand_u, v=self.rand_v,
h=self.rand_h, gravity=1.0, drag=1.0)
du_dt, dv_dt, dh_dt = r
self.assertEqual(du_dt.shape[0], self.rand_u.shape[0])
self.assertEqual(du_dt.shape[1], self.rand_u.shape[1] - 2)
self.assertEqual(dv_dt.shape[0], self.rand_v.shape[0] - 2)
self.assertEqual(dv_dt.shape[1], self.rand_v.shape[1])
self.assertEqual(dh_dt.shape, self.rand_h.shape)
class TestComputeCurl(unittest.TestCase):
def test_compute_curl(self):
dx = dy = 1.0
u = create_new_test_array()[:-1, :]
v = create_new_test_array()[:, :-1]
u_at_v = (u[:-1, :-1] + u[1:, :-1] + u[1:, 1:] + u[-1:, 1:]) * 0.25
v_at_u = (v[:-1, :-1] + v[1:, :-1] + v[1:, 1:] + v[-1:, 1:]) * 0.25
du_dy = np.diff(u_at_v, axis=0) / dy
dv_dx = np.diff(v_at_u, axis=1) / dx
curl = dv_dx[1:-1, :] - du_dy[:, 1:-1]
class TestBoundary(unittest.TestCase):
''' Check that boundary reflection functions are working. In the expected
arrays below ghost values are written in parentheses for clarity '''
def setUp(self):
self.dummy = np.zeros((10, 10))
def test_u_ghost_cells(self):
u = create_new_test_array()
reflect_ghost_cells(u, self.dummy, self.dummy)
expected = np.array([[(5), (1), (7), (1), (5), (1), (7)],
[(8), 8, 1, 5, 8, (8), (1)],
[(1), 3, 0, 0, 1, (3), (0)],
[(0), 2, 1, 8, 0, (2), (1)],
[(5), 1, 7, 1, 5, (1), (7)],
[(8), (8), (1), (5), (8), (8), (1)]])
np.testing.assert_equal(u, expected)
def test_v_ghost_cells(self):
v = create_new_test_array()
reflect_ghost_cells(self.dummy, v, self.dummy)
expected = np.array([[(2), (2), (1), (8), (0), (2), (2)],
[(5), 8, 1, 5, 8, 5, (8)],
[(9), 3, 0, 0, 1, 9, (3)],
[(2), 2, 1, 8, 0, 2, (2)],
[(5), (8), (1), (5), (8), (5), (8)],
[(9), (3), (0), (0), (1), (9), (3)]])
np.testing.assert_equal(v, expected)
def test_h_ghost_cells(self):
h = create_new_test_array()
reflect_ghost_cells(self.dummy, self.dummy, h)
expected = np.array([[(0), (1), (7), (1), (5), (0), (1)],
[(5), 8, 1, 5, 8, 5, (8)],
[(9), 3, 0, 0, 1, 9, (3)],
[(2), 2, 1, 8, 0, 2, (2)],
[(0), 1, 7, 1, 5, 0, (1)],
[(5), (8), (1), (5), (8), (5), (8)]])
np.testing.assert_equal(h, expected)
class TestSolverAgainstAnalyticalSolutions(unittest.TestCase):
def test_drag_component(self):
''' Set up the following equations, which have analytical solutions
u = u_0 * exp(- c_drag * t):
du_dt = - c_drag * u
dv_dt = - c_drag * v
We can run a number of timesteps and check that our numerical solutions
are close.
'''
# set parameters
n = 10
dt = 0.001
nsteps = 250
drag = 0.8
u_0 = 1.5
v_0 = - 2.5
constants = SimpleNamespace(n=n, gravity=0, drag=drag, dx=1, dy=1,
h_background=0)
# initial conditions
u, v, h, _ = create_grids(n)
u[:] = u_0
v[:] = v_0
# solve for nsteps
for _ in range(0, nsteps):
timestep(u, v, h, dt, constants)
# check every cell is equal to the analytical solution
analytical_solution_u = u_0 * math.exp( - drag * nsteps * dt)
analytical_solution_v = v_0 * math.exp( - drag * nsteps * dt)
inner_u = u[1:-1, 1:-2]
inner_v = v[1:-2, 1:-1]
self.assertTrue(np.all(inner_u - analytical_solution_u < 0.01))
self.assertTrue(np.all(inner_v - analytical_solution_v < 0.01))
if __name__ == '__main__':
unittest.main()