forked from bes-dev/stable_diffusion.openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
stable_diffusion_engine.py
212 lines (190 loc) · 8.27 KB
/
stable_diffusion_engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import inspect
import numpy as np
# openvino
from openvino.runtime import Core
# tokenizer
from transformers import CLIPTokenizer
# utils
from tqdm import tqdm
from huggingface_hub import hf_hub_download
from diffusers import LMSDiscreteScheduler, PNDMScheduler
import cv2
def result(var):
return next(iter(var.values()))
class StableDiffusionEngine:
def __init__(
self,
scheduler,
model="bes-dev/stable-diffusion-v1-4-openvino",
tokenizer="openai/clip-vit-large-patch14",
device="CPU"
):
self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer)
self.scheduler = scheduler
# models
self.core = Core()
# text features
self._text_encoder = self.core.read_model(
hf_hub_download(repo_id=model, filename="text_encoder.xml"),
hf_hub_download(repo_id=model, filename="text_encoder.bin")
)
self.text_encoder = self.core.compile_model(self._text_encoder, device)
# diffusion
self._unet = self.core.read_model(
hf_hub_download(repo_id=model, filename="unet.xml"),
hf_hub_download(repo_id=model, filename="unet.bin")
)
self.unet = self.core.compile_model(self._unet, device)
self.latent_shape = tuple(self._unet.inputs[0].shape)[1:]
# decoder
self._vae_decoder = self.core.read_model(
hf_hub_download(repo_id=model, filename="vae_decoder.xml"),
hf_hub_download(repo_id=model, filename="vae_decoder.bin")
)
self.vae_decoder = self.core.compile_model(self._vae_decoder, device)
# encoder
self._vae_encoder = self.core.read_model(
hf_hub_download(repo_id=model, filename="vae_encoder.xml"),
hf_hub_download(repo_id=model, filename="vae_encoder.bin")
)
self.vae_encoder = self.core.compile_model(self._vae_encoder, device)
self.init_image_shape = tuple(self._vae_encoder.inputs[0].shape)[2:]
def _preprocess_mask(self, mask):
h, w = mask.shape
if h != self.init_image_shape[0] and w != self.init_image_shape[1]:
mask = cv2.resize(
mask,
(self.init_image_shape[1], self.init_image_shape[0]),
interpolation = cv2.INTER_NEAREST
)
mask = cv2.resize(
mask,
(self.init_image_shape[1] // 8, self.init_image_shape[0] // 8),
interpolation = cv2.INTER_NEAREST
)
mask = mask.astype(np.float32) / 255.0
mask = np.tile(mask, (4, 1, 1))
mask = mask[None].transpose(0, 1, 2, 3)
mask = 1 - mask
return mask
def _preprocess_image(self, image):
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
h, w = image.shape[1:]
if h != self.init_image_shape[0] and w != self.init_image_shape[1]:
image = cv2.resize(
image,
(self.init_image_shape[1], self.init_image_shape[0]),
interpolation=cv2.INTER_LANCZOS4
)
# normalize
image = image.astype(np.float32) / 255.0
image = 2.0 * image - 1.0
# to batch
image = image[None].transpose(0, 3, 1, 2)
return image
def _encode_image(self, init_image):
moments = result(self.vae_encoder.infer_new_request({
"init_image": self._preprocess_image(init_image)
}))
mean, logvar = np.split(moments, 2, axis=1)
std = np.exp(logvar * 0.5)
latent = (mean + std * np.random.randn(*mean.shape)) * 0.18215
return latent
def __call__(
self,
prompt,
init_image = None,
mask = None,
strength = 0.5,
num_inference_steps = 32,
guidance_scale = 7.5,
eta = 0.0
):
# extract condition
tokens = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True
).input_ids
text_embeddings = result(
self.text_encoder.infer_new_request({"tokens": np.array([tokens])})
)
# do classifier free guidance
if guidance_scale > 1.0:
tokens_uncond = self.tokenizer(
"",
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True
).input_ids
uncond_embeddings = result(
self.text_encoder.infer_new_request({"tokens": np.array([tokens_uncond])})
)
text_embeddings = np.concatenate((uncond_embeddings, text_embeddings), axis=0)
# set timesteps
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
extra_set_kwargs = {}
offset = 0
if accepts_offset:
offset = 1
extra_set_kwargs["offset"] = 1
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
# initialize latent latent
if init_image is None:
latents = np.random.randn(*self.latent_shape)
init_timestep = num_inference_steps
else:
init_latents = self._encode_image(init_image)
init_timestep = int(num_inference_steps * strength) + offset
init_timestep = min(init_timestep, num_inference_steps)
timesteps = np.array([[self.scheduler.timesteps[-init_timestep]]]).astype(np.long)
noise = np.random.randn(*self.latent_shape)
latents = self.scheduler.add_noise(init_latents, noise, timesteps)[0]
if init_image is not None and mask is not None:
mask = self._preprocess_mask(mask)
else:
mask = None
# if we use LMSDiscreteScheduler, let's make sure latents are mulitplied by sigmas
if isinstance(self.scheduler, LMSDiscreteScheduler):
latents = latents * self.scheduler.sigmas[0]
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
t_start = max(num_inference_steps - init_timestep + offset, 0)
for i, t in tqdm(enumerate(self.scheduler.timesteps[t_start:])):
# expand the latents if we are doing classifier free guidance
latent_model_input = np.stack([latents, latents], 0) if guidance_scale > 1.0 else latents[None]
if isinstance(self.scheduler, LMSDiscreteScheduler):
sigma = self.scheduler.sigmas[i]
latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5)
# predict the noise residual
noise_pred = result(self.unet.infer_new_request({
"latent_model_input": latent_model_input,
"t": t,
"encoder_hidden_states": text_embeddings
}))
# perform guidance
if guidance_scale > 1.0:
noise_pred = noise_pred[0] + guidance_scale * (noise_pred[1] - noise_pred[0])
# compute the previous noisy sample x_t -> x_t-1
if isinstance(self.scheduler, LMSDiscreteScheduler):
latents = self.scheduler.step(noise_pred, i, latents, **extra_step_kwargs)["prev_sample"]
else:
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs)["prev_sample"]
# masking for inapinting
if mask is not None:
init_latents_proper = self.scheduler.add_noise(init_latents, noise, t)
latents = ((init_latents_proper * mask) + (latents * (1 - mask)))[0]
image = result(self.vae_decoder.infer_new_request({
"latents": np.expand_dims(latents, 0)
}))
# convert tensor to opencv's image format
image = (image / 2 + 0.5).clip(0, 1)
image = (image[0].transpose(1, 2, 0)[:, :, ::-1] * 255).astype(np.uint8)
return image