-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
574 lines (474 loc) · 26.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
import argparse
import copy
import datetime
import numpy as np
import time
import torch
import torch.backends.cudnn as cudnn
import json
import yaml
from pathlib import Path
from timm.data import Mixup
from timm.models import create_model
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
from timm.scheduler import create_scheduler
from timm.optim import create_optimizer
from timm.utils import NativeScaler
from lib.datasets import build_dataset, build_transform
from engine import train_one_epoch, evaluate
from lib.samplers import RASampler
from lib import utils
from lib.config import cfg, update_config_from_file
from model.vision_transformer import VisionTransformer
import sklearn.cluster as cluster
import model as models
from timm.models import load_checkpoint
import os
def get_args_parser():
parser = argparse.ArgumentParser('AutoFormer training and evaluation script', add_help=False)
parser.add_argument('--batch-size', default=64, type=int)
parser.add_argument('--epochs', default=100, type=int)
# ship related parameters
parser.add_argument('--share_threshold', type=float, default=1.0, metavar='PCT',
help='Similarity threshold across layers (default: 1.0)')
parser.add_argument('--end_layer', type=int, default=12, help='insert prompt up to N layer.')
# config file
parser.add_argument('--cfg',help='experiment configure file name',required=True,type=str)
# custom parameters
parser.add_argument('--platform', default='pai', type=str, choices=['itp', 'pai', 'aml'],
help='Name of model to train')
parser.add_argument('--teacher_model', default='', type=str,
help='Name of teacher model to train')
parser.add_argument('--relative_position', action='store_true')
parser.add_argument('--gp', action='store_true')
parser.add_argument('--change_qkv', action='store_true')
parser.add_argument('--max_relative_position', type=int, default=14, help='max distance in relative position embedding')
# Model parameters
parser.add_argument('--model', default='', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--pretrained_feature_exp', type=str, default='zeroshot', help='extracted feature path')
parser.add_argument('--mode', type=str, default='super', choices=['super', 'vp','retrain','search'], help='mode of AutoFormer')
parser.add_argument('--input-size', default=224, type=int)
parser.add_argument('--patch_size', default=16, type=int)
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT',
help='Dropout rate (default: 0.)')
parser.add_argument('--drop-path', type=float, default=0.1, metavar='PCT',
help='Drop path rate (default: 0.1)')
parser.add_argument('--drop-block', type=float, default=None, metavar='PCT',
help='Drop block rate (default: None)')
parser.add_argument('--model-ema', action='store_true')
parser.add_argument('--no-model-ema', action='store_false', dest='model_ema')
# parser.set_defaults(model_ema=True)
parser.add_argument('--model-ema-decay', type=float, default=0.99996, help='')
parser.add_argument('--model-ema-force-cpu', action='store_true', default=False, help='')
parser.add_argument('--rpe_type', type=str, default='bias', choices=['bias', 'direct'])
parser.add_argument('--post_norm', action='store_true')
parser.add_argument('--no_abs_pos', action='store_true')
# Optimizer parameters
parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER',
help='Optimizer (default: "adamw"')
parser.add_argument('--opt-eps', default=1e-8, type=float, metavar='EPSILON',
help='Optimizer Epsilon (default: 1e-8)')
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA',
help='Optimizer Betas (default: None, use opt default)')
parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
# Learning rate schedule parameters
parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "cosine"')
parser.add_argument('--lr', type=float, default=5e-4, metavar='LR',
help='learning rate (default: 5e-4)')
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
help='learning rate noise on/off epoch percentages')
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
help='learning rate noise limit percent (default: 0.67)')
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
help='learning rate noise std-dev (default: 1.0)')
parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--lr-power', type=float, default=1.0,
help='power of the polynomial lr scheduler')
parser.add_argument('--decay-epochs', type=float, default=30, metavar='N',
help='epoch interval to decay LR')
parser.add_argument('--warmup-epochs', type=int, default=10, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
parser.add_argument('--patience-epochs', type=int, default=10, metavar='N',
help='patience epochs for Plateau LR scheduler (default: 10')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
# Augmentation parameters
parser.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT',
help='Color jitter factor (default: 0.4)')
parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME',
help='Use AutoAugment policy. "v0" or "original". " + \
"(default: rand-m9-mstd0.5-inc1)'),
parser.add_argument('--smoothing', type=float, default=0.0, help='Label smoothing (default: 0.1)')
parser.add_argument('--train-interpolation', type=str, default='bicubic',
help='Training interpolation (random, bilinear, bicubic default: "bicubic")')
parser.add_argument('--repeated-aug', action='store_true')
# parser.add_argument('--no-repeated-aug', action='store_false', dest='repeated_aug')
# parser.set_defaults(repeated_aug=True)
# * Random Erase params
parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT',
help='Random erase prob (default: 0.25)')
parser.add_argument('--remode', type=str, default='pixel',
help='Random erase mode (default: "pixel")')
parser.add_argument('--recount', type=int, default=1,
help='Random erase count (default: 1)')
parser.add_argument('--resplit', action='store_true', default=False,
help='Do not random erase first (clean) augmentation split')
# * Mixup params
parser.add_argument('--mixup', type=float, default=0.,
help='mixup alpha, mixup enabled if > 0. (default: 0.8)')
parser.add_argument('--cutmix', type=float, default=0.,
help='cutmix alpha, cutmix enabled if > 0. (default: 1.0)')
parser.add_argument('--cutmix-minmax', type=float, nargs='+', default=None,
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
parser.add_argument('--mixup-prob', type=float, default=1.0,
help='Probability of performing mixup or cutmix when either/both is enabled')
parser.add_argument('--mixup-switch-prob', type=float, default=0.5,
help='Probability of switching to cutmix when both mixup and cutmix enabled')
parser.add_argument('--mixup-mode', type=str, default='batch',
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
# Dataset parameters
parser.add_argument('--data-path', default='./data/imagenet/', type=str,
help='dataset path')
parser.add_argument('--test', action='store_true', help='using test-split or validation split')
parser.add_argument('--save_trainset_feature', action='store_true', help='save trainset feature')
parser.add_argument('--data_percentage', type=float, default=1.0,
help='train data percentage for FGVC tasks.')
parser.add_argument('--data-set', default='IMNET', type=str, help='Image Net dataset path')
parser.add_argument('--inat-category', default='name',
choices=['kingdom', 'phylum', 'class', 'order', 'supercategory', 'family', 'genus', 'name'],
type=str, help='semantic granularity')
parser.add_argument('--output_dir', default='./',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--dist-eval', action='store_true', default=False, help='Enabling distributed evaluation')
parser.add_argument('--pin-mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem',
help='')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--amp', action='store_true')
parser.add_argument('--no-amp', action='store_false', dest='amp')
# parser.set_defaults(amp=True)
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--is_visual_prompt_tuning', action='store_true')
parser.add_argument('--is_adapter', action='store_true')
parser.add_argument('--is_LoRA', action='store_true')
parser.add_argument('--is_prefix', action='store_true')
parser.add_argument('--no_aug', action='store_true')
parser.add_argument('--val_interval', default=10, type=int, help='validataion interval')
parser.add_argument('--drop_rate_LoRA', type=float, default=0.1)
parser.add_argument('--drop_rate_prompt', type=float, default=0.1)
parser.add_argument('--drop_rate_adapter', type=float, default=0.1)
parser.add_argument('--few-shot-seed', type=int, default=0)
parser.add_argument('--few-shot-shot', type=int, default=2)
parser.add_argument('--inception',action='store_true')
parser.add_argument('--direct_resize',action='store_true')
parser.add_argument('--IS_not_position_VPT',action='store_true')
parser.set_defaults(no_aug=True)
parser.set_defaults(inception=True)
parser.set_defaults(direct_resize=True)
parser.set_defaults(IS_not_position_VPT=True)
return parser
def dfs(adj_matrix, visited, node, group, alpha):
visited[node] = True
group.append(node)
for neighbor in range(node + 1, len(adj_matrix)):
similarity = adj_matrix[node][neighbor]
if not visited[neighbor]:
visited[neighbor] = True
if similarity < alpha:
dfs(adj_matrix, visited, neighbor, group, alpha)
def group_elements(adj_matrix, alpha):
n = len(adj_matrix)
visited = [False] * n
groups = []
group = []
dfs(adj_matrix, visited, 0, group, alpha)
groups.append(group)
return groups[0]
def cosine_similarity_matrix(features):
norm_features = features / np.linalg.norm(features, axis=-1, keepdims=True)
similarity_matrix = np.matmul(norm_features, norm_features.transpose(1, 0))
return similarity_matrix
def batch_similarity_matrix(features):
n, batch_size, dim = features.shape
similarity_matrices = []
for i in range(batch_size):
similarity_matrix = cosine_similarity_matrix(features[:, i])
similarity_matrices.append(similarity_matrix)
avg_similarity_matrix = np.mean(similarity_matrices, axis=0)
return avg_similarity_matrix
def _coarse_clustering(args, n_cluster=200):
prototype_save_path = './save_attribute/{}/prototype_{}_clusters.npy'.format(args.data_set, n_cluster)
if os.path.exists(prototype_save_path):
prototype_gather = torch.tensor(np.load(prototype_save_path))
print("Nums of prototypes of coarse clusters for test dataset: {}".format(prototype_gather.size(0)))
return prototype_gather
features = np.load('./saves/{}_{}/feats.npy'.format(args.data_set, args.pretrained_feature_exp))
if features.shape[1] > 1000:
indices = np.random.choice(features.shape[1], size=1000, replace=False)
features = features[:, indices, :]
features = torch.tensor(features)
kmeans = cluster.KMeans(n_clusters=n_cluster, random_state=42)
kmeans.fit(features[-1].cpu().numpy())
y_pred = kmeans.labels_
y_pred = torch.from_numpy(y_pred)
coarse_class_idx = torch.unique(y_pred)
num_coarse_classes = len(coarse_class_idx)
print("Nums of coarsely divided categories for test dataset: {}".format(num_coarse_classes))
prototype_gather = []
for i in range(len(coarse_class_idx)):
pos = torch.where(y_pred == i)[0]
prototype = features[:, pos].mean(1).unsqueeze(1)
prototype_gather.append(prototype)
prototype_gather = torch.cat(prototype_gather, dim=1)[-1]
print("Nums of prototypes of coarse clusters for test dataset: {}".format(prototype_gather.size(0)))
os.makedirs("save_attribute/{}".format(args.data_set), exist_ok=True)
np.save(prototype_save_path, prototype_gather.cpu().numpy())
return prototype_gather
def main(args):
update_config_from_file(args.cfg)
if args.launcher == 'none':
args.distributed = False
print(args)
args_text = yaml.safe_dump(args.__dict__, default_flow_style=False)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
dataset_train, args.nb_classes = build_dataset(is_train=True, args=args,is_individual_prompt=(args.is_visual_prompt_tuning or args.is_adapter or args.is_LoRA or args.is_prefix))
dataset_val, _ = build_dataset(is_train=False, args=args,is_individual_prompt=(args.is_visual_prompt_tuning or args.is_adapter or args.is_LoRA or args.is_prefix))
print(f"{args.data_set} dataset, train: {len(dataset_train)}, evaluation: {len(dataset_val)}")
if args.distributed:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
if args.repeated_aug:
sampler_train = RASampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
else:
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
if args.dist_eval:
if len(dataset_val) % num_tasks != 0:
print(
'Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
'This will slightly alter validation results as extra duplicate entries are added to achieve '
'equal num of samples per-process.')
sampler_val = torch.utils.data.DistributedSampler(
dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False)
else:
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
else:
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
sampler_train = torch.utils.data.RandomSampler(dataset_train)
if args.save_trainset_feature:
dataset_train_temp = copy.deepcopy(dataset_train)
dataset_train_temp.transform = build_transform(False, args)
trainset_sampler = torch.utils.data.SequentialSampler(dataset_train)
trainset_dataloader = torch.utils.data.DataLoader(
dataset_train_temp, batch_size=int(2 * args.batch_size),
sampler=trainset_sampler, num_workers=args.num_workers,
pin_memory=args.pin_mem, drop_last=False
)
original_model = models.__dict__[cfg.MODEL_NAME](
img_size=args.input_size,
drop_rate=args.drop,
drop_path_rate=args.drop_path, visual_prompt_indices=[], # duplicate_prompt=cfg.SUPERNET.DUPLICATE,
super_prompt_tuning_dim=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
super_LoRA_dim=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
super_adapter_dim=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
super_prefix_dim=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
drop_rate_LoRA=args.drop_rate_LoRA,
drop_rate_prompt=args.drop_rate_prompt,
drop_rate_adapter=args.drop_rate_adapter,
)
original_model.eval()
original_model = original_model.to(device)
return
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
data_loader_val = torch.utils.data.DataLoader(
dataset_val, batch_size=int(2 * args.batch_size),
sampler=sampler_val, num_workers=args.num_workers,
pin_memory=args.pin_mem, drop_last=False
)
mixup_fn = None
print(f"Creating SuperVisionTransformer")
print(cfg)
share_threshold = args.share_threshold
if share_threshold < 1.0:
if os.path.exists("save_affinity/{}/affinity.npy".format(args.data_set)):
adj_matrix = np.load("save_affinity/{}/affinity.npy".format(args.data_set))
else:
features = np.load('./saves/{}_{}/feats.npy'.format(args.data_set, args.pretrained_feature_exp))
adj_matrix = batch_similarity_matrix(features)
os.makedirs("save_affinity/{}".format(args.data_set), exist_ok=True)
np.save("save_affinity/{}/affinity.npy".format(args.data_set), adj_matrix)
visual_prompt_indices = group_elements(adj_matrix, share_threshold)
else:
visual_prompt_indices = list(range(12))
visual_prompt_indices = [x for x in visual_prompt_indices if x < args.end_layer]
print("Visual Prompting in {} layers.".format(visual_prompt_indices))
model = models.__dict__[cfg.MODEL_NAME](
img_size=args.input_size,
drop_rate=args.drop,
drop_path_rate=args.drop_path, visual_prompt_indices=visual_prompt_indices, # duplicate_prompt=cfg.SUPERNET.DUPLICATE,
super_prompt_tuning_dim=cfg.RETRAIN.VISUAL_PROMPT_DIM,
super_LoRA_dim=cfg.SUPERNET.LORA_DIM,
super_adapter_dim=cfg.SUPERNET.ADAPTER_DIM,
super_prefix_dim=cfg.SUPERNET.PREFIX_DIM,
drop_rate_LoRA=args.drop_rate_LoRA,
drop_rate_prompt=args.drop_rate_prompt,
drop_rate_adapter=args.drop_rate_adapter,
)
model.feature_bank = _coarse_clustering(args, 200).to(device)
choices = {'depth': cfg.SUPERNET.DEPTH,
'super_prompt_tuning_dim':cfg.RETRAIN.VISUAL_PROMPT_DIM,
'super_LoRA_dim':cfg.SUPERNET.LORA_DIM,
'super_adapter_dim':cfg.SUPERNET.ADAPTER_DIM,
'super_prefix_dim':cfg.SUPERNET.PREFIX_DIM,
}
if args.resume:
if "linear-vit-b-300ep.pth.tar" in args.resume:
model.reset_classifier(1000)
incompatible_keys = load_checkpoint(model, args.resume, strict=False)
print(incompatible_keys)
if args.nb_classes != model.head.weight.shape[0]:
model.reset_classifier(args.nb_classes)
elif 'pth' in args.resume:
if args.nb_classes != model.head.weight.shape[0]:
model.reset_classifier(args.nb_classes)
incompatible_keys = load_checkpoint(model, args.resume,strict=False)
print(incompatible_keys)
else:
load_checkpoint(model, args.resume)
if args.nb_classes != model.head.weight.shape[0]:
model.reset_classifier(args.nb_classes)
model.to(device)
teacher_model = None
teacher_loss = None
model_ema = None
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
optimizer = create_optimizer(args, model_without_ddp)
total_params = 0
for group in optimizer.param_groups:
for param in group['params']:
total_params += param.numel()
print(f"Optimizer total parameters: {total_params}")
loss_scaler = NativeScaler()
lr_scheduler, _ = create_scheduler(args, optimizer)
criterion = torch.nn.CrossEntropyLoss()
output_dir = Path(args.output_dir)
if not output_dir.exists():
output_dir.mkdir(parents=True)
# save config for later experiments
with open(output_dir / "config.yaml", 'w') as f:
f.write(args_text)
retrain_config = None
if args.mode == 'retrain' and "RETRAIN" in cfg:
retrain_config = {'visual_prompt_dim':cfg.RETRAIN.VISUAL_PROMPT_DIM,
'lora_dim':cfg.RETRAIN.LORA_DIM,'adapter_dim':cfg.RETRAIN.ADAPTER_DIM,'prefix_dim':cfg.RETRAIN.PREFIX_DIM}
if args.save_trainset_feature:
evaluate(trainset_dataloader, model, device, output_dir=args.output_dir, mode=args.mode, save_feature=False,
retrain_config=retrain_config, is_visual_prompt_tuning=args.is_visual_prompt_tuning,
is_adapter=args.is_adapter, is_LoRA=args.is_LoRA, is_prefix=args.is_prefix)
return
if args.eval:
test_stats = evaluate(data_loader_val, model, device, output_dir=args.output_dir, mode = args.mode, save_feature=False,
retrain_config=retrain_config,is_visual_prompt_tuning=args.is_visual_prompt_tuning,
is_adapter=args.is_adapter,is_LoRA=args.is_LoRA,is_prefix=args.is_prefix)
print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
return
print("Start training")
start_time = time.time()
max_accuracy = 0.0
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
use_matching_loss = cfg.SUPERNET.MATCHING_LOSS and epoch >= 10 # warm up epoch = 10
train_stats = train_one_epoch(
model, criterion, data_loader_train,
optimizer, device, epoch, loss_scaler,
args.clip_grad, model_ema, mixup_fn,
amp=args.amp, teacher_model=teacher_model,
teach_loss=teacher_loss, matching_loss=use_matching_loss,
choices=choices, mode = args.mode, retrain_config=retrain_config,
is_visual_prompt_tuning=args.is_visual_prompt_tuning,
is_adapter=args.is_adapter,is_LoRA=args.is_LoRA,is_prefix=args.is_prefix,
)
lr_scheduler.step(epoch)
if args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint.pth']
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'scaler': loss_scaler.state_dict(),
'args': args,
}, checkpoint_path)
if epoch % args.val_interval == 0 or epoch == args.epochs-1:
test_stats = evaluate(data_loader_val, model, device, output_dir=args.output_dir, amp=args.amp, choices=choices, mode = args.mode, retrain_config=retrain_config,is_visual_prompt_tuning=args.is_visual_prompt_tuning,is_adapter=args.is_adapter,is_LoRA=args.is_LoRA,is_prefix=args.is_prefix)
print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
max_accuracy = max(max_accuracy, test_stats["acc1"])
print(f'Max accuracy: {max_accuracy:.2f}%')
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'max_accuracy': max_accuracy,
'epoch': epoch,
'prompt_indices': model.visual_prompt_indices,
'n_parameters': total_params}
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('SHIP training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
with (Path(args.output_dir) / "log.txt").open("a") as f:
f.write(' '.join([f'--{arg} {getattr(args, arg)}' for arg in vars(args)]) + '\n')
main(args)