-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_cli.py
64 lines (50 loc) · 2.6 KB
/
main_cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# main.py
from pytorch_lightning.cli import LightningArgumentParser, LightningCLI
from transcription.module import D3RM
from transcription.datamodule import MAESTRO_V3_DataModule
# simple demo classes for your convenience
import argparse, os, glob, datetime
from pytorch_lightning import seed_everything
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.callbacks import ModelCheckpoint
from termcolor import colored
import torch
import wandb
torch.backends.cudnn.benchmark = True
class D3RMCLI(LightningCLI):
def add_arguments_to_parser(self, parser: LightningArgumentParser) -> None:
parser.add_argument( "-d", "--debug", type=bool, default=False, help="enable post-mortem debugging",)
parser.add_argument("--wandb", type=bool, default=False, help="wandb online/offline",)
def before_fit(self):
if not self.config.fit.ckpt_path: # if not resuming from checkpoint
self.now = id = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
elif self.config.fit.ckpt_path: # resuming from checkpoint
ckpt_date = os.path.basename(os.path.dirname(self.config.fit.ckpt_path))
print(colored("Continue training from checkpoint: ", "red", attrs=['bold']), ckpt_date)
self.now = id = ckpt_date
# Logging
wandb_logger = WandbLogger(save_dir=f"./logs/{self.now}",
name=self.now,
project="D3RM",
offline=(not self.config.fit.wandb),
id=id)
# Model checkpoint (automatically called after validation)
model_checkpoint_callback = ModelCheckpoint(
dirpath=f'./checkpoints/{self.now}',
monitor='metric_note_with_offsets_f1',
mode='max',
save_top_k=7,
save_last=True,
verbose=True,
filename='{step:07}-{metric_note_with_offsets_f1:.4f}') # python recognized '/', '-' as '_'
self.trainer.logger = wandb_logger
self.trainer.callbacks.append(model_checkpoint_callback)
self.config.fit.model.test_save_path = f"./results/{self.now}"
print(colored("Test results will be saved in: ", "green", attrs=['bold']), self.config.fit.model.test_save_path)
# def before_instantiate_classes(self) -> None:
def cli_main():
cli = D3RMCLI(D3RM, MAESTRO_V3_DataModule,
# save_config_kwargs={"overwrite": True}, # save_config_callback=None # when using wandb, saving config leads to conflicts.
)
if __name__ == "__main__":
cli_main()