-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSimplecticIntegrator.m
165 lines (135 loc) · 4.68 KB
/
SimplecticIntegrator.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
classdef SimplecticIntegrator < handle
%Classical Symplectic integrator for the one-dimensional split Hamiltonian H(q, p) = T(p) + V(q)
% 詳細説明をここに記述
properties
dT % function of dT/dp
dV % function of dV/dq
tau %
evolve
end
methods
function obj = SimplecticIntegrator(dT, dV, varargin)
%UNTITLED2 このクラスのインスタンスを作成
% 詳細説明をここに記述
obj.dT = dT;
obj.dV = dV;
par = inputParser;
addOptional(par, 'tau', 1, @isnumeric)
addOptional(par, 'order', 1, @(x) x == floor(x) );
%addOptional(par, 'OPorder', 'TV', @(x) ismember(x, ["TV" "VT" "TVT" "VTV"]) );
parse(par, varargin{:} );
obj.tau = par.Results.tau;
order = par.Results.order;
%obj.order = order;
%obj.tau = 1;
%obj.evolve = @(q, p) evo
if order == 1
obj.evolve = @(x) obj.evolveQP(x);
elseif order == -1
obj.evolve = @(x) obj.evolvePQ(x);
elseif order == 2
obj.evolve = @(x) obj.evolvePQP(x);
elseif order == -2
obj.evolve = @(x) obj.evolveQPQ(x);
end
end
%function x = evolve(obj, x)
% x = evolveTV(x);
% %op = @(x) obj.evolveTV(x);
%
%end
function x = evolveP(obj, x, c)
arguments
obj
x
c = 1
end
q = x(1, :);
p = x(2, :);
tau = obj.tau;
x = [q; p - obj.dV(q) * tau * c];
end
function x = evolveQ(obj, x, c)
arguments
obj
x
c = 1
end
q = x(1, :);
p = x(2, :);
tau = obj.tau;
x = [q + obj.dT(p) * tau * c; p];
end
function x = evolveQP(obj, x, z)
% 1st order simplectic integrator for TV order
arguments
obj
x
z = 1
end
c = [1 1];
x = obj.evolveP(x, c(1));
x = obj.evolveQ(x, c(2));
end
function x = evolvePQ(obj, x, z)
% 1st order simplectic integrator for TV order
arguments
obj
x
z = 1
end
c = [1 1];
x = obj.evolveQ(x, c(1));
x = obj.evolveP(x, c(2));
end
function x = evolvePQP(obj, x, z)
% 1st order simplectic integrator for TV order
arguments
obj
x
z = 1
end
c = [1/2 1];
x = obj.evolveP(x, c(1)*z);
x = obj.evolveQ(x, c(2)*z);
x = obj.evolveP(x, c(1)*z);
end
function x = evolveQPQ(obj, x, z)
% 1st order simplectic integrator for TV order
arguments
obj
x
z = 1
end
c = [1/2 1];
x = obj.evolveQ(x, c(1)*z);
x = obj.evolveP(x, c(2)*z);
x = obj.evolveQ(x, c(1)*z);
end
function traj = getTraj(obj, x, tmax)
traj = [[], []];
for i=1:tmax
x = obj.evolveTV(x);
traj = horzcat(traj, x);
end
end
%function x = evoVT(obj, x, tau)
% 1st order simplectic integrator for VT order
% q = q + obj.dT(p)*tau;
% p = p - obj.dV(q)*tau;
%end
%function [q, p] = evo_TVT(obj,q, p, tau)
% 1st order simplectic integrator for TVT order
% q = q + obj.dT(p)*tau/2;
% p = p - obj.dV(q)*tau;
% q = q - obj.dT(p)*tau/2;
%end
%function outputArg = evo_TVT(obj,q, p, tau)
%METHOD1 このメソッドの概要をここに記述
% 詳細説明をここに記述
% p = p + obj.dV(q)*tau/2;
% q = q - obj.dT(p)*tau;
% p = p - obj.dV(q)*tau/2;
%end
end
end