forked from hhb072/WaveletSRNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
131 lines (103 loc) · 4.44 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import torch
import torch.utils.data as data
from os import listdir
from os.path import join
from PIL import Image, ImageOps
import random
import torchvision.transforms as transforms
def is_image_file(filename):
return any(filename.endswith(extension) for extension in [".png", ".jpg", ".jpeg"])
def readlinesFromFile(path, datasize):
print("Load from file %s" % path)
f=open(path)
data=[]
for idx in xrange(0, datasize):
line = f.readline()
data.append(line)
f.close()
return data
def loadFromFile(path, datasize):
if path is None:
return None, None
print("Load from file %s" % path)
f=open(path)
data=[]
label=[]
for idx in xrange(0, datasize):
line = f.readline().split()
data.append(line[0])
label.append(line[1])
f.close()
return data, label
def load_video_image(file_path, input_height=128, input_width=None, output_height=128, output_width=None,
crop_height=None, crop_width=None, is_random_crop=True, is_mirror=True,
is_gray=False, scale=1.0, is_scale_back=False):
if input_width is None:
input_width = input_height
if output_width is None:
output_width = output_height
if crop_width is None:
crop_width = crop_height
img = Image.open(file_path)
if is_gray is False and img.mode is not 'RGB':
img = img.convert('RGB')
if is_gray and img.mode is not 'L':
img = img.convert('L')
if is_mirror and random.randint(0,1) is 0:
img = ImageOps.mirror(img)
if input_height is not None:
img = img.resize((input_width, input_height),Image.BICUBIC)
if crop_height is not None:
[w, h] = img.size
if is_random_crop:
#print([w,cropSize])
cx1 = random.randint(0, w-crop_width)
cx2 = w - crop_width - cx1
cy1 = random.randint(0, h-crop_height)
cy2 = h - crop_height - cy1
else:
cx2 = cx1 = int(round((w-crop_width)/2.))
cy2 = cy1 = int(round((h-crop_height)/2.))
img = ImageOps.crop(img, (cx1, cy1, cx2, cy2))
#print(scale)
img = img.resize((output_width, output_height),Image.BICUBIC)
img_lr = img.resize((int(output_width/scale),int(output_height/scale)),Image.BICUBIC)
if is_scale_back:
return img_lr.resize((output_width, output_height),Image.BICUBIC), img
else:
return img_lr, img
class ImageDatasetFromFile(data.Dataset):
def __init__(self, image_list, root_path, input_height=128, input_width=None, output_height=128, output_width=None,
crop_height=None, crop_width=None, is_random_crop=True, is_mirror=True,
is_gray=False, upscale=1.0, is_scale_back=False):
super(ImageDatasetFromFile, self).__init__()
self.image_filenames = image_list
self.upscale = upscale
self.is_random_crop = is_random_crop
self.is_mirror = is_mirror
self.input_height = input_height
self.input_width = input_width
self.output_height = output_height
self.output_width = output_width
self.root_path = root_path
self.crop_height = crop_height
self.crop_width = crop_width
self.is_scale_back = is_scale_back
self.is_gray = is_gray
self.input_transform = transforms.Compose([
transforms.ToTensor()
])
def __getitem__(self, index):
if self.is_mirror:
is_mirror = random.randint(0,1) is 0
else:
is_mirror = False
lr, hr = load_video_image(join(self.root_path, self.image_filenames[index]),
self.input_height, self.input_width, self.output_height, self.output_width,
self.crop_height, self.crop_width, self.is_random_crop, is_mirror,
self.is_gray, self.upscale, self.is_scale_back)
input = self.input_transform(lr)
target = self.input_transform(hr)
return input, target
def __len__(self):
return len(self.image_filenames)