-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathPhD_Defense_Example.py
1135 lines (1093 loc) · 71.6 KB
/
PhD_Defense_Example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
'''In this script, all the operations that are presented in the paper called
"Using Iterative Prior Resampling to improve Bayesian Evidential Learning 1D
imaging (BEL1D): application to surface waves" are performed and explained.
The different graphs that are originating from the python script are also
outputted here.
'''
from matplotlib.pyplot import figure
from numpy import arange
if __name__=="__main__": # To prevent recomputation when in parallel
#########################################################################################
### Import the different libraries that are used in the script ###
#########################################################################################
## Common libraries:
import numpy as np # For matrix-like operations and storage
import os # For files structures and read/write operations
from os import listdir # To retreive elements from a folder
from os.path import isfile, join # Common files operations
from matplotlib import pyplot, colors # For graphics on post-processing
import matplotlib
pyplot.rcParams['font.size'] = 18
pyplot.rcParams['figure.autolayout'] = True
pyplot.rcParams['xtick.labelsize'] = 16
pyplot.rcParams['ytick.labelsize'] = 16
from mpl_toolkits.axes_grid1 import make_axes_locatable
import time # For simple timing measurements
from copy import deepcopy
## Libraries for parallel computing:
from pathos import multiprocessing as mp # Multiprocessing utilities (get CPU cores info)
from pathos import pools as pp # Building the pool to use for computations
## BEL1D requiered libraries:
from scipy import stats # To build the prior model space
from pyBEL1D import BEL1D # The main code for BEL1D
from pyBEL1D.utilities import Tools # For further post-processing
from pyBEL1D.utilities.Tools import multiPngs # For saving the figures as png
## Forward modelling code:
from pysurf96 import surf96 # Code for the forward modelling of dispersion curves
#########################################################################################
### Flags for the different computation possible ###
#########################################################################################
'''
For reproductibility of the results, we can fix the random seed.
To fix the random seed, set RamdomSeed to False. Otherwise, the
seed will be provided by the operating system.
Note that the results exposed in the publication are performed
under Windows 10 running python 3.7.6 (numpy=1.16.5, scikit-
learn=0.23.1 and scipy=1.5.0).
We observed that the random function does not necesseraly produce
exactly the same results under other environments (and python
versions)!
'''
RandomSeed = False # If True, use true random seed, else (False), fixed for reproductibility (seed=0)
'''
Some input parameters, to obtain some results or others.
Eventhough the computations are relativelly fast, producing the
different graphs might be very cumbersome (matplotlib produces
nice figures, but is very slow).
'''
Graphs = True # Obtain all the graphs?
ParallelComputing = True # Use parallel computing whenever possible?
BenchmarkCompute = True # Compute the results for the benchmark model?
McMCRejection = True # Compare to MCMC and rejection sampling
TestOtherNbLayers = False # Testing the benchmark model with more layers than what is really in the model. Only active if BenchmarkCompute is.
MirandolaCompute = False # Compute the results for the Mirandola case study?
DiscussionCompute = False # Compute the necessary results for the discussion? WARNING: VERY LONG COMPUTATIONS
verbose = True # Output all the details about the current progress of the computations
statsCompute = True # Parameter for the computation/retun of statistics along with the iterations.
#########################################################################################
### Initilizing the parallel pool ###
#########################################################################################
if ParallelComputing:
pool = pp.ProcessPool(mp.cpu_count()) # Create the parallel pool with at most the number of dimensions
ppComp = [True, pool]
else:
ppComp = [False, None] # No parallel computing
#########################################################################################
### Defining the benchmark model ###
#########################################################################################
def buildMODELSET():
'''BUILDMODELSET is a function that will build the benchmark model.
It does not take any arguments. '''
# Values for the benchmark model parameters:
TrueModel = np.asarray([0.01, 0.05, 0.120, 0.280, 0.600]) # Thickness and Vs for the 3 layers (variable of the problem)
Vp = np.asarray([0.300, 0.750, 1.5]) # Vp for the 3 layers
rho = np.asarray([1.5, 1.9, 2.2]) # rho for the 3 layers
nLayer = 3 # Number of layers in the model
Frequency = np.logspace(0.1,1.5,50) # Frequencies at which the signal is simulated
Periods = np.divide(1,Frequency) # Corresponding periods
# Forward modelling using surf96:
Dataset = surf96(thickness=np.append(TrueModel[0:nLayer-1], [0]),vp=Vp,vs=TrueModel[nLayer-1:2*nLayer-1],rho=rho,periods=Periods,wave="rayleigh",mode=1,velocity="phase",flat_earth=True)
# Building the noise model (Boaga et al., 2011)
ErrorModelSynth = [0.075, 20]
NoiseEstimate = np.asarray(np.divide(ErrorModelSynth[0]*Dataset*1000 + np.divide(ErrorModelSynth[1],Frequency),1000)) # Standard deviation for all measurements in km/s
RMSE_Noise = np.sqrt(np.square(NoiseEstimate).mean(axis=-1))
print('The RMSE for the dataset with 1 times the standard deviation is: {} km/s'.format(RMSE_Noise))
# Define the prior model space:
# Find min and max Vp for each layer in the range of Poisson's ratio [0.2, 0.45]:
# For Vp1=0.3, the roots are : 0.183712 and 0.0904534 -> Vs1 = [0.1, 0.18]
# For Vp2=0.75, the roots are : 0.459279 and 0.226134 -> Vs2 = [0.25, 0.45]
# For Vp3=1.5, the roots are : 0.918559 and 0.452267 -> Vs2 = [0.5, 0.9]
prior = np.array([[0.001, 0.03, 0.1, 0.18],[0.01, 0.1, 0.25, 0.45],[0.0, 0.0, 0.5, 0.9]])# Thicknesses min and max, Vs min and max for each layers.
# Defining names of the variables (for graphical outputs).
nParam = 2 # e and Vs
ListPrior = [None] * ((nLayer*nParam)-1)# Half space at bottom
NamesFullUnits = [None] * ((nLayer*nParam)-1)# Half space at bottom
NamesShort = [None] * ((nLayer*nParam)-1)# Half space at bottom
NamesShortUnits = [None] * ((nLayer*nParam)-1)# Half space at bottom
Mins = np.zeros(((nLayer*nParam)-1,))
Maxs = np.zeros(((nLayer*nParam)-1,))
Units = ["\\ [km]", "\\ [km/s]"]
NFull = ["Thickness\\ ","s-Wave\\ velocity\\ "]
NShort = ["th_{", "Vs_{"]
ident = 0
for j in range(nParam):
for i in range(nLayer):
if not((i == nLayer-1) and (j == 0)):# Not the half-space thickness
ListPrior[ident] = stats.uniform(loc=prior[i,j*2],scale=prior[i,j*2+1]-prior[i,j*2])
Mins[ident] = prior[i,j*2]
Maxs[ident] = prior[i,j*2+1]
NamesFullUnits[ident] = NFull[j] + str(i+1) + Units[j]
NamesShortUnits[ident] = NShort[j] + str(i+1) + "}" + Units[j]
NamesShort[ident] = NShort[j] + str(i+1) + "}"
ident += 1
method = "DC"
Periods = np.divide(1,Frequency)
paramNames = {"NamesFU":NamesFullUnits,
"NamesSU":NamesShortUnits,
"NamesS":NamesShort,
"NamesGlobal":NFull,
"NamesGlobalS":["Depth\\ [km]", "Vs\\ [km/s]", "Vp\\ [km/s]", "\\rho\\ [T/m^3]"],
"DataUnits":"[km/s]",
"DataName":"Phase\\ velocity\\ [km/s]",
"DataAxis":"Periods\\ [s]"}
# Defining the forward modelling function
def funcSurf96(model):
import numpy as np
from pysurf96 import surf96
Vp = np.asarray([0.300, 0.750, 1.5]) # Defined again inside the function for parallelization
rho = np.asarray([1.5, 1.9, 2.2]) # Idem
nLayer = 3 # Idem
Frequency = np.logspace(0.1,1.5,50) # Idem
Periods = np.divide(1,Frequency) # Idem
return surf96(thickness=np.append(model[0:nLayer-1], [0]), # The 2 first values of the model are the thicknesses
vp=Vp, # Fixed value for Vp
vs=model[nLayer-1:2*nLayer-1], # The 3 last values of the model are the Vs
rho=rho, # Fixed value for rho
periods=Periods, # Periods at which to compute the model
wave="rayleigh", # Type of wave to simulate
mode=1, # Only compute the fundamental mode
velocity="phase", # Use phase velocity and not group velocity
flat_earth=True) # Local model where the flat-earth hypothesis makes sens
forwardFun = funcSurf96
forward = {"Fun":forwardFun,"Axis":Periods}
# Building the function for conditions (here, just checks that a sampled model is inside the prior)
cond = lambda model: (np.logical_and(np.greater_equal(model,Mins),np.less_equal(model,Maxs))).all()
# Initialize the model parameters for BEL1D
ModelSynthetic = BEL1D.MODELSET(prior=ListPrior,cond=cond,method=method,forwardFun=forward,paramNames=paramNames,nbLayer=nLayer)
return TrueModel, Periods, Dataset, NoiseEstimate, ModelSynthetic
#########################################################################################
### Synthetic case for Vs and e only ###
#########################################################################################
if BenchmarkCompute:
print('\n\n\nComputing for the benchmark model!\n\n\n')
### For reproductibility - Random seed fixed
if not(RandomSeed):
np.random.seed(0) # For reproductibilty
from random import seed
seed(0)
### End random seed fixed
# Initializing the model:
TrueModel, Periods, Dataset, NoiseEstimate, ModelSynthetic = buildMODELSET()
### Plot for profile and dataset
# fig = pyplot.figure(figsize=[5,10])# Creates the figure space
# axs = fig.subplots()
# axs.step(np.append(TrueModel[2:], TrueModel[-1]),np.append(np.append(0, TrueModel[:2]), 0.150),where='pre',color='r')
# axs.set_xlabel('S-wave velocity [km/s]')
# axs.set_ylabel('Depth [km]')
# axs.invert_yaxis()
# axs.grid()
# axs.set_xlim(left=0.0, right=1.0)
# axs.set_ylim(top=0.0, bottom=0.150)
# _, ax = pyplot.subplots()
# ax.plot(Periods, Dataset, color='r')
# ax.plot(Periods, Dataset+NoiseEstimate, ':', color='r')
# ax.plot(Periods, Dataset-NoiseEstimate, ':', color='r')
# ax.set_xlabel('Periods [s]')
# ax.set_ylabel('Phase velocity [km/s]')
# ax.grid()
# ax.set_ylim(bottom=0.0, top=0.8)
# ax.set_xlim(left=0.0, right=0.8)
# pyplot.show()
### Begin IPR
nbModelsBase = 1000
def MixingFunc(iter:int) -> float:
return 1# Always keeping the same proportion of models as the initial prior (see paper for argumentation).
if statsCompute:
Prebel, Postbel, PrebelInit, statsCompute = BEL1D.IPR(MODEL=ModelSynthetic,Dataset=Dataset,NoiseEstimate=NoiseEstimate,Parallelization=ppComp,
nbModelsBase=nbModelsBase,nbModelsSample=nbModelsBase,stats=True, Mixing=MixingFunc,
Graphs=Graphs, TrueModel=TrueModel, verbose=verbose)
else:
Prebel, Postbel, PrebelInit = BEL1D.IPR(MODEL=ModelSynthetic,Dataset=Dataset,NoiseEstimate=NoiseEstimate,Parallelization=ppComp,
nbModelsBase=nbModelsBase,nbModelsSample=nbModelsBase,Mixing=None,Graphs=Graphs, TrueModel=TrueModel)
### Graphs for the prior analysis:
# PrebelInit.ShowPriorDataset()
# ax = pyplot.gca()
# ax.plot(Periods, Dataset, color='r')
# ax.plot(Periods, Dataset+NoiseEstimate, ':', color='r')
# ax.plot(Periods, Dataset-NoiseEstimate, ':', color='r')
# ax.set_xlabel('Periods [s]')
# ax.set_ylabel('Phase velocity [km/s]')
# ax.grid()
# ax.set_ylim(bottom=0.0, top=0.8)
# ax.set_xlim(left=0.0, right=0.8)
# PrebelInit.ShowPreModels()
# axs = pyplot.gca()
# axs.step(np.append(TrueModel[2:], TrueModel[-1]),np.append(np.append(0, TrueModel[:2]), 0.150),where='pre',color='r')
# axs.set_xlabel('S-wave velocity [km/s]')
# axs.set_ylabel('Depth [km]')
# axs.invert_yaxis()
# axs.grid()
# axs.set_xlim(left=0.0, right=1.0)
# axs.set_ylim(top=0.0, bottom=0.150)
# ## Creating a graph with the variability for PCA dimensions in the datasets:
# import sklearn
# pca_data = sklearn.decomposition.PCA()
# d_h = pca_data.fit_transform(PrebelInit.FORWARD)
# # Dataset += np.ones_like(Dataset)
# d_obs_h = pca_data.transform(np.reshape(Dataset,(1,-1)))
# fig, ax = pyplot.subplots(2,1)
# for i in range(50):
# ax[0].scatter(np.ones_like(d_h[:,i])*(i), d_h[:,i], color=[0.5, 0.5, 0.5])
# ax[0].scatter(i, d_obs_h[0, i], color='r')
# ax[1].plot(range(50), np.cumsum(pca_data.explained_variance_ratio_*100), '.-', color='b')
# # Number of requiered dimensions:
# nbDimVar = 2-1
# nbDimNeeded = 5-1
# ax[1].axvline(nbDimVar, color='k')
# ax[1].axvline(nbDimNeeded, color='r')
# ax[0].set_ylim(top=1.5, bottom=-1.5)
# ax[1].set_xlabel('PCA dimension #')
# ax[0].set_ylabel('PCA values [/]')
# ax[1].set_ylabel('Cumulative PCA variance [%]')
# ax[0].grid()
# ax[1].grid()
# nbComponents = 5
# cca_transform = sklearn.cross_decomposition.CCA(n_components=nbComponents)
# d_c,m_c = cca_transform.fit_transform(d_h,PrebelInit.MODELS)
# d_obs_c = cca_transform.transform(d_obs_h)
# for i in range(nbComponents):
# fig, ax = pyplot.subplots()
# ax.scatter(d_c[:,i], m_c[:,i], color=[0.5, 0.5, 0.5])
# ax.axvline(d_obs_c[0,i], color='r', label='Observed data')
# ax.set_xlabel(rf'$d_{i+1}^c$')
# ax.set_ylabel(rf'$m_{i+1}^c$')
# ax.legend()
# PrebelInit.KDE.ShowKDE(Xvals=d_obs_c)
# pyplot.show()
if Graphs:
# Show final results analysis:
if True: # First iteration results?
PostbelInit = BEL1D.POSTBEL(PrebelInit)
PostbelInit.run(Dataset=Dataset, nbSamples=nbModelsBase,NoiseModel=NoiseEstimate)
PostbelInit.DataPost(Parallelization=ppComp)
PostbelInit.ShowPostCorr(TrueModel=TrueModel, OtherMethod=PrebelInit.MODELS, alpha=[0.25, 1])
PostbelInit.ShowDataset(RMSE=True, Prior=True)
CurrentGraph = pyplot.gcf()
CurrentGraph = CurrentGraph.get_axes()[0]
CurrentGraph.plot(Periods, Dataset+NoiseEstimate,'k--')
CurrentGraph.plot(Periods, Dataset-NoiseEstimate,'k--')
CurrentGraph.plot(Periods, Dataset+2*NoiseEstimate,'k:')
CurrentGraph.plot(Periods, Dataset-2*NoiseEstimate,'k:')
CurrentGraph.plot(Periods, Dataset,'k')
PostbelInit.ShowPostModels(TrueModel=TrueModel, RMSE=True) #, NoiseModel=NoiseEstimate)
CurrentGraph = pyplot.gcf()
CurrentAxes = CurrentGraph.get_axes()[0]
CurrentAxes.set_xlim(left=0,right=1)
CurrentAxes.set_ylim(bottom=0.150, top=0.0)
CurrentAxes.set_title("BEL1D",fontsize=16)
if True: # Comparison iterations?
# Graphs for the iterations:
Postbel.ShowDataset(RMSE=True,Prior=True)#,Parallelization=[True,pool])
CurrentGraph = pyplot.gcf()
CurrentGraph = CurrentGraph.get_axes()[0]
CurrentGraph.plot(Periods, Dataset+NoiseEstimate,'k--')
CurrentGraph.plot(Periods, Dataset-NoiseEstimate,'k--')
CurrentGraph.plot(Periods, Dataset+2*NoiseEstimate,'k:')
CurrentGraph.plot(Periods, Dataset-2*NoiseEstimate,'k:')
CurrentGraph.plot(Periods, Dataset,'k')
Postbel.ShowPostCorr(TrueModel=TrueModel,OtherMethod=PrebelInit.MODELS, alpha=[0.25, 1])
Postbel.ShowPostModels(TrueModel=TrueModel,RMSE=True) #, NoiseModel=NoiseEstimate)#,Parallelization=[True, pool])
CurrentGraph = pyplot.gcf()
CurrentAxes = CurrentGraph.get_axes()[0]
CurrentAxes.set_xlim(left=0,right=1)
CurrentAxes.set_ylim(bottom=0.150, top=0.0)
CurrentAxes.set_title("BEL1D + IPR",fontsize=16)
# Graph for the CCA space parameters loads
_, ax = pyplot.subplots()
B = PrebelInit.CCA.y_loadings_
B = np.divide(np.abs(B).T,np.repeat(np.reshape(np.sum(np.abs(B),axis=0),(1,B.shape[0])),B.shape[0],axis=0).T)
ind = np.asarray(range(B.shape[0]))+1
ax.bar(x=ind,height=B[0],label=r'${}$'.format(PrebelInit.MODPARAM.paramNames["NamesSU"][0]))
for i in range(B.shape[0]+1)[1:-1]:
ax.bar(x=ind,height=B[i],bottom=np.reshape(np.sum(B[0:i],axis=0),(B.shape[0],)),label=r'${}$'.format(PrebelInit.MODPARAM.paramNames["NamesSU"][i]))
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width, box.height*0.8])
ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.4), ncol=3)
ax.set_ylabel('Relative contribution')
ax.set_xlabel('CCA dimension')
ax.set_title('First iteration')
pyplot.show(block=False)
_, ax = pyplot.subplots()
B = Postbel.CCA.y_loadings_
B = np.divide(np.abs(B).T,np.repeat(np.reshape(np.sum(np.abs(B),axis=0),(1,B.shape[0])),B.shape[0],axis=0).T)
ind = np.asarray(range(B.shape[0]))+1
ax.bar(x=ind,height=B[0],label=r'${}$'.format(Postbel.MODPARAM.paramNames["NamesSU"][0]))
for i in range(B.shape[0]+1)[1:-1]:
ax.bar(x=ind,height=B[i],bottom=np.reshape(np.sum(B[0:i],axis=0),(B.shape[0],)),label=r'${}$'.format(Postbel.MODPARAM.paramNames["NamesSU"][i]))
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width, box.height*0.8])
ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.4), ncol=3)
ax.set_ylabel('Relative contribution')
ax.set_xlabel('CCA dimension')
ax.set_title('Last iteration')
pyplot.show(block=False)
# if True: # Compare to DREAM?
# # Compare the results to McMC results:
# McMC = np.load("./Data/DC/SyntheticBenchmark/DREAM_MASW.npy")
# # We consider a burn-in period of 75%:
# DREAM=McMC[int(len(McMC)*3/4):,:5] # The last 2 columns are the likelihood and the log-likelihood, which presents no interest here
# # DREAM = np.unique(DREAM,axis=0)
# print('Number of models in the postrior: \n\t-BEL1D: {}\n\t-DREAM: {}'.format(len(Postbel.SAMPLES[:,1]),len(DREAM[:,1])))
# Postbel.ShowPostCorr(TrueModel=TrueModel, OtherMethod=DREAM, OtherInFront=True, alpha=[0.02, 0.06]) # They are 3 times more models for BEL1D than DREAM
# DREAM_Models, DREAM_Data = Postbel.DataPost(Parallelization=ppComp, OtherModels=DREAM)
# Postbel.ShowPostModels(TrueModel=TrueModel, RMSE=True, OtherModels=DREAM_Models, OtherData=DREAM_Data, OtherRMSE=True)
# CurrentGraph = pyplot.gcf()
# CurrentAxes = CurrentGraph.get_axes()[0]
# CurrentAxes.set_xlim(left=0,right=1)
# CurrentAxes.set_ylim(bottom=0.100, top=0.0)
# CurrentGraph.suptitle("DREAM",fontsize=16)
# else:
# DREAM_Models = None
if McMCRejection: # Comparison MCMC/rejection?
### For reproductibility - Random seed fixed
if not(RandomSeed):
np.random.seed(0) # For reproductibilty
from random import seed
seed(0)
### End random seed fixed
# Testing the McMC algorithm after BEL1D with IPR:
print('Executing MCMC on PREBEL . . .')
## Executing MCMC on the prior:
MCMC_Init, MCMC_Init_Data = PrebelInit.runMCMC(Dataset=Dataset, nbSamples=125000, nbChains=5, NoiseModel=NoiseEstimate, verbose=verbose)# 10 independant chains of 50000 models
## Extracting the after burn-in models (last 75%)
MCMC = []
MCMC_Data = []
for i in range(MCMC_Init.shape[0]):
for j in np.arange(int(MCMC_Init.shape[1]/4*3),MCMC_Init.shape[1],50):
MCMC.append(np.squeeze(MCMC_Init[i,j,:]))
MCMC_Data.append(np.squeeze(MCMC_Init_Data[i,j,:]))
MCMC_Init = np.asarray(MCMC)
MCMC_Init_Data = np.asarray(MCMC_Data)
Postbel.ShowPostModels(TrueModel=TrueModel, RMSE=True, OtherModels=MCMC_Init, OtherData=MCMC_Init_Data) #, NoiseModel=NoiseEstimate)
CurrentGraph = pyplot.gcf()
CurrentAxes = CurrentGraph.get_axes()[0]
CurrentAxes.set_xlim(left=0,right=1)
CurrentAxes.set_ylim(bottom=0.100, top=0.0)
CurrentAxes.set_title("McMC",fontsize=16)
## Exectuing MCMC on the posterior:
print('Executing MCMC on POSTBEL . . .')
MCMC_Final, MCMC_Final_Data = Postbel.runMCMC(nbSamples=25000,nbChains=5, NoiseModel=NoiseEstimate, verbose=verbose)# 10 independant chains of 10000 models
## Extracting the after burn-in models (last 75%)
MCMC = []
MCMC_Data = []
for i in range(MCMC_Final.shape[0]):
for j in np.arange(int(MCMC_Final.shape[1]/4*3),MCMC_Final.shape[1],10):
MCMC.append(np.squeeze(MCMC_Final[i,j,:]))
MCMC_Data.append(np.squeeze(MCMC_Final_Data[i,j,:]))
MCMC_Final = np.asarray(MCMC)
MCMC_Final_Data = np.asarray(MCMC_Data)
Postbel.ShowPostModels(TrueModel=TrueModel, RMSE=True, OtherModels=MCMC_Final, OtherData=MCMC_Final_Data) #, NoiseModel=NoiseEstimate)
CurrentGraph = pyplot.gcf()
CurrentAxes = CurrentGraph.get_axes()[0]
CurrentAxes.set_xlim(left=0,right=1)
CurrentAxes.set_ylim(bottom=0.100, top=0.0)
CurrentAxes.set_title("BEL1D + IPR + McMC",fontsize=16)
print('Executing rejection on the BEL1D models . . .')
PostbelRejection = deepcopy(Postbel)
PostbelRejection.run(Dataset=Dataset, nbSamples=15000, NoiseModel=NoiseEstimate, verbose=verbose)
ModelsRejection, DataRejection = PostbelRejection.runRejection(Parallelization=ppComp, NoiseModel=NoiseEstimate, verbose=verbose)
Postbel.ShowPostModels(TrueModel=TrueModel, RMSE=True, OtherModels=ModelsRejection, OtherData=DataRejection) #, NoiseModel=NoiseEstimate)
CurrentGraph = pyplot.gcf()
CurrentAxes = CurrentGraph.get_axes()[0]
CurrentAxes.set_xlim(left=0,right=1)
CurrentAxes.set_ylim(bottom=0.100, top=0.0)
CurrentAxes.set_title("BEL1D + IPR + Rejection",fontsize=16)
# Adding the graph with correlations:
ratioAlpha = 0.2 / len(ModelsRejection)
## For rejection sampling:
nbParam = Postbel.SAMPLES.shape[1]
fig = pyplot.figure(figsize=[10,10])# Creates the figure space
axs = fig.subplots(nbParam, nbParam)
for i in range(nbParam):
for j in range(nbParam):
if i == j: # Diagonal
if i != nbParam-1:
axs[i,j].get_shared_x_axes().join(axs[i,j],axs[-1,j])# Set the xaxis limit
axs[i,j].hist(PrebelInit.MODELS[:,j], color='gold',density=True)
axs[i,j].hist(Postbel.SAMPLES[:,j],color='royalblue',density=True,alpha=0.75) # Plot the histogram for the given variable
axs[i,j].hist(MCMC_Init[:,j],color='limegreen',density=True,alpha=0.75)
# axs[i,j].hist(MCMC_Final[:,j],color='limegreen',density=True,alpha=0.75)
axs[i,j].hist(ModelsRejection[:,j],color='darkorange',density=True,alpha=0.75)
if TrueModel is not None:
axs[i,j].plot([TrueModel[i],TrueModel[i]],np.asarray(axs[i,j].get_ylim()),'r')
if nbParam > 8:
axs[i,j].set_xticks([])
axs[i,j].set_yticks([])
elif i > j: # Below the diagonal -> Scatter plot
if i != nbParam-1:
axs[i,j].get_shared_x_axes().join(axs[i,j],axs[-1,j])# Set the xaxis limit
if j != nbParam-1:
if i != nbParam-1:
axs[i,j].get_shared_y_axes().join(axs[i,j],axs[i,-1])# Set the yaxis limit
else:
axs[i,j].get_shared_y_axes().join(axs[i,j],axs[i,-2])# Set the yaxis limit
axs[i,j].plot(PrebelInit.MODELS[:,j], PrebelInit.MODELS[:,i], color='gold',marker= '.', linestyle='None', markeredgecolor='none')
axs[i,j].plot(Postbel.SAMPLES[:,j],Postbel.SAMPLES[:,i],color = 'royalblue', marker = '.', linestyle='None', alpha=0.5, markeredgecolor='none')
axs[i,j].plot(ModelsRejection[:,j],ModelsRejection[:,i],color='darkorange', marker = '.', linestyle='None', alpha=0.6, markeredgecolor='none')
if TrueModel is not None:
axs[i,j].plot(TrueModel[j],TrueModel[i],'or')
if nbParam > 8:
axs[i,j].set_xticks([])
axs[i,j].set_yticks([])
elif MCMC_Init is not None:
if i != nbParam-1:
axs[i,j].get_shared_x_axes().join(axs[i,j],axs[-1,j])# Set the xaxis limit
if j != nbParam-1:
if i != 0:
axs[i,j].get_shared_y_axes().join(axs[i,j],axs[i,-1])# Set the yaxis limit
else:
axs[i,j].get_shared_y_axes().join(axs[i,j],axs[i,-2])# Set the yaxis limit
axs[i,j].plot(PrebelInit.MODELS[:,j], PrebelInit.MODELS[:,i], color='gold',marker= '.', linestyle='None', markeredgecolor='none')
axs[i,j].plot(MCMC_Init[:,j],MCMC_Init[:,i],color='limegreen', marker = '.', linestyle='None', alpha=ratioAlpha*len(MCMC_Init)/2, markeredgecolor='none')
# axs[i,j].plot(MCMC_Final[:,j],MCMC_Final[:,i],color='limegreen', marker = '.', linestyle='None', alpha=0.2, markeredgecolor='none')
if TrueModel is not None:
axs[i,j].plot(TrueModel[j],TrueModel[i],'or')
if nbParam > 8:
axs[i,j].set_xticks([])
axs[i,j].set_yticks([])
else:
axs[i,j].set_visible(False)
if j == 0: # First column of the graph
if ((i==0)and(j==0)) or not(i==j):
axs[i,j].set_ylabel(r'${}$'.format(Postbel.MODPARAM.paramNames["NamesSU"][i]))
if i == nbParam-1: # Last line of the graph
axs[i,j].set_xlabel(r'${}$'.format(Postbel.MODPARAM.paramNames["NamesSU"][j]))
if j == nbParam-1:
if not(i==j):
axs[i,j].yaxis.set_label_position("right")
axs[i,j].yaxis.tick_right()
axs[i,j].set_ylabel(r'${}$'.format(Postbel.MODPARAM.paramNames["NamesSU"][i]))
if i == 0:
axs[i,j].xaxis.set_label_position("top")
axs[i,j].xaxis.tick_top()
axs[i,j].set_xlabel(r'${}$'.format(Postbel.MODPARAM.paramNames["NamesSU"][j]))
# fig.suptitle("Posterior model space visualization")
import matplotlib.patches as mpatches
patch0 = mpatches.Patch(facecolor='red', edgecolor='#000000')
patch1 = mpatches.Patch(facecolor='royalblue', edgecolor='#000000') #this will create a red bar with black borders, you can leave out edgecolor if you do not want the borders
patch2 = mpatches.Patch(facecolor='limegreen', edgecolor='#000000')
# patch3 = mpatches.Patch(facecolor='limegreen', edgecolor='#000000')
patch4 = mpatches.Patch(facecolor='darkorange', edgecolor='#000000')
patch5 = mpatches.Patch(facecolor='gold', edgecolor='#000000')
fig.legend(handles=[patch0, patch5, patch1, patch2, patch4],
labels=["Benchmark", "Prior", "BEL1D + IPR", "McMC", "BEL1D + IPR + Rejection"],
loc="upper center", ncol=3)
for ax in axs.flat:
ax.label_outer()
# pyplot.suptitle('Effect of Rejection sampling')
pyplot.tight_layout(rect=(0,0,1,0.9))
pyplot.show(block=False)
# For MCMC:
nbParam = Postbel.SAMPLES.shape[1]
fig = pyplot.figure(figsize=[10,10])# Creates the figure space
axs = fig.subplots(nbParam, nbParam)
for i in range(nbParam):
for j in range(nbParam):
if i == j: # Diagonal
if i != nbParam-1:
axs[i,j].get_shared_x_axes().join(axs[i,j],axs[-1,j])# Set the xaxis limit
axs[i,j].hist(PrebelInit.MODELS[:,j], color='gold',density=True)
axs[i,j].hist(Postbel.SAMPLES[:,j],color='royalblue',density=True,alpha=0.75) # Plot the histogram for the given variable
axs[i,j].hist(MCMC_Init[:,j],color='limegreen',density=True,alpha=0.75)
# axs[i,j].hist(MCMC_Final[:,j],color='limegreen',density=True,alpha=0.75)
axs[i,j].hist(MCMC_Final[:,j],color='darkorange',density=True,alpha=0.75)
if TrueModel is not None:
axs[i,j].plot([TrueModel[i],TrueModel[i]],np.asarray(axs[i,j].get_ylim()),'r')
if nbParam > 8:
axs[i,j].set_xticks([])
axs[i,j].set_yticks([])
elif i > j: # Below the diagonal -> Scatter plot
if i != nbParam-1:
axs[i,j].get_shared_x_axes().join(axs[i,j],axs[-1,j])# Set the xaxis limit
if j != nbParam-1:
if i != nbParam-1:
axs[i,j].get_shared_y_axes().join(axs[i,j],axs[i,-1])# Set the yaxis limit
else:
axs[i,j].get_shared_y_axes().join(axs[i,j],axs[i,-2])# Set the yaxis limit
axs[i,j].plot(PrebelInit.MODELS[:,j], PrebelInit.MODELS[:,i], color='gold',marker= '.', linestyle='None', markeredgecolor='none')
axs[i,j].plot(Postbel.SAMPLES[:,j],Postbel.SAMPLES[:,i],color = 'royalblue', marker = '.', linestyle='None', alpha=5, markeredgecolor='none')
axs[i,j].plot(MCMC_Final[:,j],MCMC_Final[:,i],color='darkorange', marker = '.', linestyle='None', alpha=ratioAlpha*len(MCMC_Final)/2, markeredgecolor='none')
if TrueModel is not None:
axs[i,j].plot(TrueModel[j],TrueModel[i],'or')
if nbParam > 8:
axs[i,j].set_xticks([])
axs[i,j].set_yticks([])
elif MCMC_Init is not None:
if i != nbParam-1:
axs[i,j].get_shared_x_axes().join(axs[i,j],axs[-1,j])# Set the xaxis limit
if j != nbParam-1:
if i != 0:
axs[i,j].get_shared_y_axes().join(axs[i,j],axs[i,-1])# Set the yaxis limit
else:
axs[i,j].get_shared_y_axes().join(axs[i,j],axs[i,-2])# Set the yaxis limit
axs[i,j].plot(PrebelInit.MODELS[:,j], PrebelInit.MODELS[:,i], color='gold',marker= '.', linestyle='None', markeredgecolor='none')
axs[i,j].plot(MCMC_Init[:,j],MCMC_Init[:,i],color='limegreen', marker = '.', linestyle='None', alpha=ratioAlpha*len(MCMC_Init)/2, markeredgecolor='none')
# axs[i,j].plot(MCMC_Final[:,j],MCMC_Final[:,i],color='limegreen', marker = '.', linestyle='None', alpha=0.2, markeredgecolor='none')
if TrueModel is not None:
axs[i,j].plot(TrueModel[j],TrueModel[i],'or')
if nbParam > 8:
axs[i,j].set_xticks([])
axs[i,j].set_yticks([])
else:
axs[i,j].set_visible(False)
if j == 0: # First column of the graph
if ((i==0)and(j==0)) or not(i==j):
axs[i,j].set_ylabel(r'${}$'.format(Postbel.MODPARAM.paramNames["NamesSU"][i]))
if i == nbParam-1: # Last line of the graph
axs[i,j].set_xlabel(r'${}$'.format(Postbel.MODPARAM.paramNames["NamesSU"][j]))
if j == nbParam-1:
if not(i==j):
axs[i,j].yaxis.set_label_position("right")
axs[i,j].yaxis.tick_right()
axs[i,j].set_ylabel(r'${}$'.format(Postbel.MODPARAM.paramNames["NamesSU"][i]))
if i == 0:
axs[i,j].xaxis.set_label_position("top")
axs[i,j].xaxis.tick_top()
axs[i,j].set_xlabel(r'${}$'.format(Postbel.MODPARAM.paramNames["NamesSU"][j]))
# fig.suptitle("Posterior model space visualization")
import matplotlib.patches as mpatches
patch0 = mpatches.Patch(facecolor='red', edgecolor='#000000')
patch1 = mpatches.Patch(facecolor='royalblue', edgecolor='#000000') #this will create a red bar with black borders, you can leave out edgecolor if you do not want the borders
patch2 = mpatches.Patch(facecolor='limegreen', edgecolor='#000000')
# patch3 = mpatches.Patch(facecolor='limegreen', edgecolor='#000000')
patch4 = mpatches.Patch(facecolor='darkorange', edgecolor='#000000')
patch5 = mpatches.Patch(facecolor='gold', edgecolor='#000000')
fig.legend(handles=[patch0, patch5, patch1, patch2, patch4],
labels=["Benchmark", "Prior", "BEL1D + IPR", "McMC", "BEL1D + IPR + MCMC"], # red, gold, royalblue, limegreen, darkorange
loc="upper center", ncol=3)
for ax in axs.flat:
ax.label_outer()
# pyplot.suptitle('Effet of MCMC post-BEL1D')
pyplot.tight_layout(rect=(0,0,1,0.9))
pyplot.show(block=False)
fig = pyplot.figure(figsize=[10, 5])
ax = fig.add_subplot(111)
ax.hist(PrebelInit.MODELS[:,0], color='gold',density=True, label='Prior')
ax.hist(MCMC_Init[:,0],color='limegreen',density=True,alpha=0.75, label='McMC')
ax.hist(ModelsRejection[:,0],color='darkorange',density=True,alpha=0.75, label='pyBEL1D')
ax.plot([TrueModel[0],TrueModel[0]],np.asarray(ax.get_ylim()),'r', label='Benchmark')
ax.set_xlabel('Layer thickness [km]')
ax.set_ylabel('Probability estimation [/]')
ax.legend()
# Stop execution to display the graphs:
multiPngs('BenchmarkFigs')
pyplot.show()
##########
# Testing the model with more layers (4, 5 and 6)
##########
# We need to rebuild the MODELSET structure since the forward cannot be exctly the same (more layers means that the fixed parameters must change as well)
if TestOtherNbLayers:
### For reproductibility - Random seed fixed
if not(RandomSeed):
np.random.seed(0) # For reproductibilty
from random import seed
seed(0)
### End random seed fixed
Frequency = np.logspace(0.1,1.5,50)
# Postbel.ShowPostModels(TrueModel=TrueModel,RMSE=True) #, NoiseModel=NoiseEstimate)
# CurrentGraph = pyplot.gcf()
# CurrentAxes = CurrentGraph.get_axes()[0]
nbLayer = 3
TrueMod = list()
TrueMod.append(np.cumsum(TrueModel[0:nbLayer-1]))
TrueMod.append(TrueModel[nbLayer-1:2*nbLayer-1])
# CurrentAxes.step(np.append(TrueMod[1][:], TrueMod[1][-1]),np.append(np.append(0, TrueMod[0][:]), 0.150),where='pre',color=[0.5, 0.5, 0.5])
# CurrentAxes.set_xlim(left=0,right=1)
# CurrentAxes.set_ylim(bottom=0.100, top=0.0)
from scipy import stats
prior4 = np.array([[0.0005, 0.015, 0.1, 0.18],[0.0005, 0.015, 0.1, 0.18],[0.01, 0.1, 0.25, 0.45],[0.0, 0.0, 0.5, 0.9]])
def funcSurf96_4(model):
import numpy as np
from pysurf96 import surf96
Vp = np.asarray([0.300, 0.300, 0.750, 1.5])
rho = np.asarray([1.5, 1.5, 1.9, 2.2])
nLayer = 4
Frequency = np.logspace(0.1,1.5,50)
Periods = np.divide(1,Frequency)
return surf96(thickness=np.append(model[0:nLayer-1], [0]),vp=Vp,vs=model[nLayer-1:2*nLayer-1],rho=rho,periods=Periods,wave="rayleigh",mode=1,velocity="phase",flat_earth=True)
prior5 = np.array([[0.0005, 0.015, 0.1, 0.18],[0.0005, 0.015, 0.1, 0.18],[0.005, 0.05, 0.25, 0.45],[0.005, 0.05, 0.25, 0.45],[0.0, 0.0, 0.5, 0.9]])
def funcSurf96_5(model):
import numpy as np
from pysurf96 import surf96
Vp = np.asarray([0.300, 0.300, 0.750, 0.750, 1.5])
rho = np.asarray([1.5, 1.5, 1.9, 1.9, 2.2])
nLayer = 5
Frequency = np.logspace(0.1,1.5,50)
Periods = np.divide(1,Frequency)
return surf96(thickness=np.append(model[0:nLayer-1], [0]),vp=Vp,vs=model[nLayer-1:2*nLayer-1],rho=rho,periods=Periods,wave="rayleigh",mode=1,velocity="phase",flat_earth=True)
prior6 = np.array([[0.00033, 0.01, 0.1, 0.18],[0.00033, 0.01, 0.1, 0.18],[0.00033, 0.01, 0.1, 0.18],[0.005, 0.05, 0.25, 0.45],[0.005, 0.05, 0.25, 0.45],[0.0, 0.0, 0.5, 0.9]])
def funcSurf96_6(model):
import numpy as np
from pysurf96 import surf96
Vp = np.asarray([0.300, 0.300, 0.300, 0.750, 0.750, 1.5])
rho = np.asarray([1.5, 1.5, 1.5, 1.9, 1.9, 2.2])
nLayer = 6
Frequency = np.logspace(0.1,1.5,50)
Periods = np.divide(1,Frequency)
return surf96(thickness=np.append(model[0:nLayer-1], [0]),vp=Vp,vs=model[nLayer-1:2*nLayer-1],rho=rho,periods=Periods,wave="rayleigh",mode=1,velocity="phase",flat_earth=True)
prior7 = np.array([[0.00033, 0.01, 0.1, 0.18],[0.00033, 0.01, 0.1, 0.18],[0.00033, 0.01, 0.1, 0.18],[0.0033, 0.033, 0.25, 0.45],[0.0033, 0.033, 0.25, 0.45],[0.0033, 0.033, 0.25, 0.45],[0.0, 0.0, 0.5, 0.9]])
def funcSurf96_7(model):
import numpy as np
from pysurf96 import surf96
Vp = np.asarray([0.300, 0.300, 0.300, 0.750, 0.750, 0.750, 1.5])
rho = np.asarray([1.5, 1.5, 1.5, 1.9, 1.9, 1.9, 2.2])
nLayer = 7
Frequency = np.logspace(0.1,1.5,50)
Periods = np.divide(1,Frequency)
return surf96(thickness=np.append(model[0:nLayer-1], [0]),vp=Vp,vs=model[nLayer-1:2*nLayer-1],rho=rho,periods=Periods,wave="rayleigh",mode=1,velocity="phase",flat_earth=True)
def MixingFunc(iter:int) -> float:
return 1# Always keeping the same proportion of models as the initial prior
PostbelFinals = []
PostbelFinals.append(Postbel) # Add the model with 3 layers first
for nLayer in np.arange(4,7+1):
if nLayer == 4:
nbModelsBase = 2500
prior = prior4
forwardFun = funcSurf96_4
elif nLayer == 5:
nbModelsBase = 5000
prior = prior5
forwardFun = funcSurf96_5
elif nLayer == 6:
nbModelsBase = 10000
prior = prior6
forwardFun = funcSurf96_6
else:
nbModelsBase = 20000
prior = prior7
forwardFun = funcSurf96_7
nParam = 2 # e and Vs
ListPrior = [None] * ((nLayer*nParam)-1)# Half space at bottom
NamesFullUnits = [None] * ((nLayer*nParam)-1)# Half space at bottom
NamesShort = [None] * ((nLayer*nParam)-1)# Half space at bottom
NamesShortUnits = [None] * ((nLayer*nParam)-1)# Half space at bottom
Mins = np.zeros(((nLayer*nParam)-1,))
Maxs = np.zeros(((nLayer*nParam)-1,))
Units = ["\\ [km]", "\\ [km/s]"]
NFull = ["Thickness\\ ","s-Wave\\ velocity\\ "]
NShort = ["e_{", "Vs_{"]
ident = 0
for j in range(nParam):
for i in range(nLayer):
if not((i == nLayer-1) and (j == 0)):# Not the half-space thickness
ListPrior[ident] = stats.uniform(loc=prior[i,j*2],scale=prior[i,j*2+1]-prior[i,j*2])
Mins[ident] = prior[i,j*2]
Maxs[ident] = prior[i,j*2+1]
NamesFullUnits[ident] = NFull[j] + str(i+1) + Units[j]
NamesShortUnits[ident] = NShort[j] + str(i+1) + "}" + Units[j]
NamesShort[ident] = NShort[j] + str(i+1) + "}"
ident += 1
method = "DC"
Periods = np.divide(1,Frequency)
paramNames = {"NamesFU":NamesFullUnits,
"NamesSU":NamesShortUnits,
"NamesS":NamesShort,
"NamesGlobal":NFull,
"NamesGlobalS":["Depth\\ [km]", "Vs\\ [km/s]", "Vp\\ [km/s]", "\\rho\\ [T/m^3]"],
"DataUnits":"[km/s]",
"DataName":"Phase\\ velocity\\ [km/s]",
"DataAxis":"Periods\\ [s]"}
forward = {"Fun":forwardFun,"Axis":Periods}
cond = lambda model: (np.logical_and(np.greater_equal(model,Mins),np.less_equal(model,Maxs))).all()
# Initialize the model parameters for BEL1D
ModelSynthetic = BEL1D.MODELSET(prior=ListPrior,cond=cond,method=method,forwardFun=forward,paramNames=paramNames,nbLayer=nLayer)
timeIn = time.time()
Prebel, Postbel, PrebelInit = BEL1D.IPR(MODEL=ModelSynthetic,Dataset=Dataset,NoiseEstimate=NoiseEstimate,Parallelization=ppComp,
nbModelsBase=nbModelsBase,nbModelsSample=nbModelsBase,stats=False, Mixing=MixingFunc,Graphs=False, verbose=verbose)
timeOut = time.time()
print(f'Run for {nLayer} layers done in {timeOut-timeIn} seconds')
# Postbel.ShowPostModels(RMSE=True)
# CurrentGraph = pyplot.gcf()
# CurrentAxes = CurrentGraph.get_axes()[0]
# nbLayer = 3
# CurrentAxes.step(np.append(TrueMod[1][:], TrueMod[1][-1]),np.append(np.append(0, TrueMod[0][:]), 0.150),where='pre',color=[0.5, 0.5, 0.5])
# CurrentAxes.set_xlim(left=0,right=1)
# CurrentAxes.set_ylim(bottom=0.100, top=0.0)
PostbelFinals.append(Postbel)
#### Creating a figure with the results for the multiple layers test:
fig, ax = pyplot.subplots(1,5,figsize=[20, 10])
nbLayers = np.arange(3,7+1)
for k in range(len(nbLayers)):
nbLayer = nbLayers[k]
# plot the model with RMSE colorbar:
# Create the axes:
currAx = ax[k]
divider = make_axes_locatable(currAx)
ax_colorbar = divider.append_axes('bottom', size='10%', pad=1)
# Compute the RMSE:
trueData = PostbelFinals[k].DATA['True']
RMS = np.sqrt(np.square(np.subtract(trueData,PostbelFinals[k].SAMPLESDATA)).mean(axis=-1))
quantiles = np.divide([stats.percentileofscore(RMS,a,'strict') for a in RMS],100)
sortIndex = np.argsort(RMS)
sortIndex = np.flip(sortIndex)
# Plot the graph:
Param = []
Param.append(np.cumsum(PostbelFinals[k].SAMPLES[:,0:nbLayer-1],axis=1))
for j in range(1):
Param.append(PostbelFinals[k].SAMPLES[:,(j+1)*nbLayer-1:(j+2)*nbLayer-1])
colormap = matplotlib.cm.get_cmap('viridis')
maxDepth = 0.100
j=0
for i in sortIndex:
currAx.step(np.append(Param[j+1][i,:], Param[j+1][i,-1]),np.append(np.append(0, Param[0][i,:]), maxDepth),where='pre',color=colormap(quantiles[i]))
currAx.step(np.append(TrueMod[1][:], TrueMod[1][-1]),np.append(np.append(0, TrueMod[0][:]), 0.150),where='pre',color=[0.5, 0.5, 0.5])
currAx.axhline(0.008, color='r')
currAx.axhline(0.05, color='r')
currAx.grid()
currAx.invert_yaxis()
currAx.set_ylim(bottom=maxDepth, top = 0.0)
currAx.set_xlabel(r'${V_s [km/s]}$')
if k < 1: # Only ylabel for the first graph
currAx.set_ylabel('Depth [km]')
currAx.set_title(f'{nbLayer}-layers model')
# Add the colorbar
nb_inter = 1000
color_for_scale = colormap(np.linspace(0,1,nb_inter,endpoint=True))
cmap_scale = colors.ListedColormap(color_for_scale)
scale = [stats.scoreatpercentile(RMS,a,limit=(np.min(RMS),np.max(RMS)),interpolation_method='lower') for a in np.linspace(0,100,nb_inter,endpoint=True)]
norm = colors.BoundaryNorm(scale,len(color_for_scale))
data = np.atleast_2d(np.linspace(np.min(RMS),np.max(RMS),nb_inter,endpoint=True))
ax_colorbar.imshow(data, aspect='auto',cmap=cmap_scale,norm=norm)
ax_colorbar.set_xlabel('RMSE [km/s]',fontsize=18)
ax_colorbar.yaxis.set_visible(False)
nbTicks = 5
ax_colorbar.set_xticks(ticks=np.linspace(0,nb_inter,nbTicks,endpoint=True))
ax_colorbar.set_xticklabels(labels=Tools.round_to_n([stats.scoreatpercentile(RMS,a,limit=(np.min(RMS),np.max(RMS)),interpolation_method='lower') for a in np.linspace(0,100,nbTicks,endpoint=True)],n=2),rotation=30,ha='right')
pyplot.tight_layout()
# Histograms at given depths:
def VsAtDepthX(model, nbLayers, depth):
th = model[:nbLayers-1]
d = np.cumsum(th)
Vs = model[nbLayers-1:]
idx = np.searchsorted(d, depth, side='right')
return Vs[idx]
k = 0
fig, ax = pyplot.subplots(1, 3, figsize=[20, 7])
for nbLayers in range(3,8):
# 8m:
v8Curr = []
v50Curr = []
dBedCurr = []
for model in PostbelFinals[k].SAMPLES:
v8Curr.append(VsAtDepthX(model, nbLayers, 0.008))
v50Curr.append(VsAtDepthX(model, nbLayers, 0.050))
dBedCurr.append(np.sum(model[:nbLayers-1]))
ax[0].hist(v8Curr, density=True, bins=50, alpha=0.5, label=f'{nbLayers} layers')
ax[1].hist(v50Curr, density=True, bins=50, alpha=0.5, label=f'{nbLayers} layers')
ax[2].hist(dBedCurr, density=True, bins=50, alpha=0.5, label=f'{nbLayers} layers')
k += 1
ax[0].axvline(0.12, color='r', label='Benchmark')
ax[1].axvline(0.28, color='r', label='Benchmark')
ax[2].axvline(0.06, color='r', label='Benchmark')
ax[0].set_ylabel('Probability [/]')
ax[1].set_ylabel('Probability [/]')
ax[2].set_ylabel('Probability [/]')
# ax[0].set_title('8 meters depth')
# ax[1].set_title('50 meters depth')
ax[0].set_xlabel('S-wave velocity at 8m [km/s]')
ax[1].set_xlabel('S-wave velocity at 50m [km/s]')
ax[2].set_xlabel('Depth to the last layer [km]')
# handles, labels = ax[1].get_legend_handles_labels()
ax[0].legend()
ax[1].legend()
ax[2].legend()
pyplot.tight_layout()
pyplot.show()
#########################################################################################
### Mirandola test case ###
#########################################################################################
if MirandolaCompute:
### For reproductibility - Random seed fixed
if not(RandomSeed):
np.random.seed(0) # For reproductibilty
from random import seed
seed(0)
### End random seed fixed
### Mirandola test case - 3 layers:
priorMIR = np.array([[0.005, 0.05, 0.1, 0.5, 0.2, 4.0, 1.5, 3.5], [0.045, 0.145, 0.1, 0.8, 0.2, 4.0, 1.5, 3.5], [0, 0, 0.3, 2.5, 0.2, 4.0, 1.5, 3.5]]) # MIRANDOLA prior test case
nbParam = int(priorMIR.size/2 - 1)
nLayer, nParam = priorMIR.shape
nParam = int(nParam/2)
stdPrior = [None]*nbParam
meansPrior = [None]*nbParam
stdUniform = lambda a,b: (b-a)/np.sqrt(12)
meansUniform = lambda a,b: (b-a)/2
ident = 0
for j in range(nParam):
for i in range(nLayer):
if not((i == nLayer-1) and (j == 0)):# Not the half-space thickness
stdPrior[ident] = stdUniform(priorMIR[i,j*2],priorMIR[i,j*2+1])
meansPrior[ident] = meansUniform(priorMIR[i,j*2],priorMIR[i,j*2+1])
ident += 1
Dataset = np.loadtxt("Data/DC/Mirandola_InterPACIFIC/Average/Average_interp60_cuttoff.txt")
FreqMIR = Dataset[:,0]
DatasetMIR = np.divide(Dataset[:,1],1000)# Phase velocity in km/s for the forward model
ErrorModel = [0.075, 20]
ModelSetMIR = BEL1D.MODELSET.DC(prior=priorMIR, Frequency=FreqMIR)
MixingFunc = lambda iter: 1 #Return 1 whatever the iteration
NoiseEstimate = np.asarray(np.divide(ErrorModel[0]*DatasetMIR*1000 + np.divide(ErrorModel[1],FreqMIR),1000)) # Standard deviation for all measurements in km/s
RMSE_Noise = np.sqrt(np.square(NoiseEstimate).mean(axis=-1))
print('The RMSE for the clean dataset with 1 times the standard deviation is: {} km/s'.format(RMSE_Noise))
nbModelsBase = 10000
Prebel, Postbel, PrebelInit, statsCompute = BEL1D.IPR(MODEL=ModelSetMIR,Dataset=DatasetMIR,NoiseEstimate=NoiseEstimate,Parallelization=ppComp,nbModelsBase=nbModelsBase,nbModelsSample=nbModelsBase,stats=True, Mixing=MixingFunc,Graphs=False, verbose=verbose)
Postbel.ShowPostCorr(OtherMethod=PrebelInit.MODELS, alpha=[0.05, 1])
# Postbel.ShowPostModels(RMSE=True) #, NoiseModel=NoiseEstimate)
Postbel.ShowDataset(RMSE=True, Prior=True)
fig = pyplot.gcf()
ax = fig.axes[0]
DataPath = "Data/DC/Mirandola_InterPACIFIC/"
files = [f for f in listdir(DataPath) if isfile(join(DataPath, f))]
for currFile in files:
DatasetOther = np.loadtxt(DataPath+currFile)
DatasetOther = np.divide(DatasetOther[:,1],1000) # Dataset for surf96 in km/s
DatasetOther[DatasetOther==0] = np.nan
ax.plot(np.divide(1,FreqMIR), DatasetOther,color='w',marker= '.', linestyle='None', markeredgecolor='none')
ax.plot(np.divide(1,FreqMIR), DatasetMIR+NoiseEstimate,'k--')
ax.plot(np.divide(1,FreqMIR), DatasetMIR-NoiseEstimate,'k--')
ax.plot(np.divide(1,FreqMIR), DatasetMIR+2*NoiseEstimate,'k:')
ax.plot(np.divide(1,FreqMIR), DatasetMIR-2*NoiseEstimate,'k:')
ax.plot(np.divide(1,FreqMIR),DatasetMIR,'k',linewidth=2) # Adding the field dataset on top of the graph
## Running the rejection sampling:
Rejection, RejectionData = Postbel.runRejection(Parallelization=ppComp, NoiseModel=NoiseEstimate, verbose=True)
# Postbel.ShowPostModels(RMSE=True, OtherModels=Rejection, OtherData=RejectionData) #, NoiseModel=NoiseEstimate)
Postbel.ShowDataset(RMSE=True, Prior=True, OtherData=RejectionData)
fig = pyplot.gcf()
ax = fig.axes[0]
DataPath = "Data/DC/Mirandola_InterPACIFIC/"
files = [f for f in listdir(DataPath) if isfile(join(DataPath, f))]
for currFile in files:
DatasetOther = np.loadtxt(DataPath+currFile)
DatasetOther = np.divide(DatasetOther[:,1],1000) # Dataset for surf96 in km/s
DatasetOther[DatasetOther==0] = np.nan
ax.plot(np.divide(1,FreqMIR), DatasetOther,color='w',marker= '.', linestyle='None', markeredgecolor='none')
ax.plot(np.divide(1,FreqMIR), DatasetMIR+NoiseEstimate,'k--')
ax.plot(np.divide(1,FreqMIR), DatasetMIR-NoiseEstimate,'k--')
ax.plot(np.divide(1,FreqMIR), DatasetMIR+2*NoiseEstimate,'k:')
ax.plot(np.divide(1,FreqMIR), DatasetMIR-2*NoiseEstimate,'k:')
ax.plot(np.divide(1,FreqMIR),DatasetMIR,'k',linewidth=2) # Adding the field dataset on top of the graph
Postbel.ShowPostCorr(OtherMethod=PrebelInit.MODELS, alpha=[0.05, 1], OtherModels=Rejection)
# What if rejection after one iteration?
PostbelInit = BEL1D.POSTBEL(PrebelInit)
PostbelInit.run(Dataset=DatasetMIR, nbSamples=nbModelsBase, NoiseModel=NoiseEstimate)
RejectionInit, RejectionDataInit = PostbelInit.runRejection(Parallelization=ppComp, NoiseModel=NoiseEstimate, verbose=True)
# Postbel.ShowPostModels(RMSE=True, OtherModels=RejectionInit, OtherData=RejectionDataInit) #, NoiseModel=NoiseEstimate)
Postbel.ShowDataset(RMSE=True, Prior=True, OtherData=RejectionDataInit)
fig = pyplot.gcf()
ax = fig.axes[0]
DataPath = "Data/DC/Mirandola_InterPACIFIC/"
files = [f for f in listdir(DataPath) if isfile(join(DataPath, f))]
for currFile in files:
DatasetOther = np.loadtxt(DataPath+currFile)
DatasetOther = np.divide(DatasetOther[:,1],1000) # Dataset for surf96 in km/s
DatasetOther[DatasetOther==0] = np.nan
ax.plot(np.divide(1,FreqMIR), DatasetOther,color='w',marker= '.', linestyle='None', markeredgecolor='none')
ax.plot(np.divide(1,FreqMIR), DatasetMIR+NoiseEstimate,'k--')
ax.plot(np.divide(1,FreqMIR), DatasetMIR-NoiseEstimate,'k--')
ax.plot(np.divide(1,FreqMIR), DatasetMIR+2*NoiseEstimate,'k:')
ax.plot(np.divide(1,FreqMIR), DatasetMIR-2*NoiseEstimate,'k:')
ax.plot(np.divide(1,FreqMIR),DatasetMIR,'k',linewidth=2) # Adding the field dataset on top of the graph
fig, ax = pyplot.subplots()
ax.hist(np.sum(PrebelInit.MODELS[:,:2],axis=1)*1000,density=True,label='Prior', alpha=0.5)
ax.hist(np.sum(RejectionInit[:,:2],axis=1)*1000,density=True,label='Posterior (BEL1D+Rejection)', alpha=0.5)
ax.hist(np.sum(Postbel.SAMPLES[:,:2],axis=1)*1000,density=True,label='Posterior (BEL1D+IPR)', alpha=0.5)
ax.hist(np.sum(Rejection[:,:2],axis=1)*1000,density=True,label='Posterior (BEL1D+IPR+Rejection)', alpha=0.5)
ylim = ax.get_ylim()
dBedrock = 118
ax.plot([dBedrock, dBedrock],ylim,'k',label='Measured')
ax.set_xlabel('Depth to bedrock [m]')
ax.set_ylabel('Probability estimation [/]')
ax.legend()
### Creating a figure with the results for the multiple layers test:
fig = pyplot.figure(figsize=[16,10])# 16 is 5 if only 1 model
# models = [[Postbel.SAMPLES, Postbel.SAMPLESDATA,'Obtained distribution']]
models = [[PostbelInit.SAMPLES, PostbelInit.SAMPLESDATA, 'BEL1D'],
[RejectionInit, RejectionDataInit, 'BEL1D + Rejection'],
[Postbel.SAMPLES, Postbel.SAMPLESDATA, 'BEL1D + IPR'],
[Rejection, RejectionData, 'BEL1D + IPR + Rejection']]
nbLayer = 3
gs = fig.add_gridspec(9, len(models))
# Compute the RMS scale:
trueData = Postbel.DATA['True']
rmsScale = np.sqrt(np.square(np.subtract(trueData,Postbel.SAMPLESDATA)).mean(axis=-1))
for k, currModels in enumerate(models):
# plot the model with RMSE colorbar:
# Create the axes:
currAx = fig.add_subplot(gs[:-1, k])
# Compute the RMSE:
RMS = np.sqrt(np.square(np.subtract(trueData, currModels[1])).mean(axis=-1))
quantiles = np.divide([stats.percentileofscore(rmsScale,a,'strict') for a in RMS],100)
sortIndex = np.argsort(RMS)
sortIndex = np.flip(sortIndex)
# Plot the graph:
Param = []
Param.append(np.cumsum(currModels[0][:,0:nbLayer-1],axis=1))
for j in range(1):
Param.append(currModels[0][:,(j+1)*nbLayer-1:(j+2)*nbLayer-1])
colormap = matplotlib.cm.get_cmap('viridis')
maxDepth = 0.250
j=0
for i in sortIndex:
currAx.step(np.append(Param[j+1][i,:], Param[j+1][i,-1]),np.append(np.append(0, Param[0][i,:]), maxDepth),where='pre',color=colormap(quantiles[i]))
currAx.grid()
currAx.invert_yaxis()
currAx.set_ylim(bottom=maxDepth, top = 0.0)
currAx.set_xlim(left=0.0, right=2.5)
currAx.set_xlabel(r'${V_s [km/s]}$')
if k < 1: # Only ylabel for the first graph
currAx.set_ylabel('Depth [km]')
currAx.set_title(currModels[2])
# Add the colorbar
ax_colorbar = fig.add_subplot(gs[-1,:])
nb_inter = 1000
color_for_scale = colormap(np.linspace(0,1,nb_inter,endpoint=True))
cmap_scale = colors.ListedColormap(color_for_scale)
scale = [stats.scoreatpercentile(rmsScale,a,limit=(np.min(rmsScale),np.max(rmsScale)),interpolation_method='lower') for a in np.linspace(0,100,nb_inter,endpoint=True)]
norm = colors.BoundaryNorm(scale,len(color_for_scale))
data = np.atleast_2d(np.linspace(np.min(rmsScale),np.max(rmsScale),nb_inter,endpoint=True))
ax_colorbar.imshow(data, aspect='auto',cmap=cmap_scale,norm=norm)
ax_colorbar.set_xlabel('RMSE [km/s]',fontsize=18)
ax_colorbar.yaxis.set_visible(False)
nbTicks = 5
ax_colorbar.set_xticks(ticks=np.linspace(0,nb_inter,nbTicks,endpoint=True))
ax_colorbar.set_xticklabels(labels=Tools.round_to_n([stats.scoreatpercentile(rmsScale,a,limit=(np.min(rmsScale),np.max(rmsScale)),interpolation_method='lower') for a in np.linspace(0,100,nbTicks,endpoint=True)],n=2),rotation=30,ha='right')
pyplot.tight_layout()
pyplot.show(block=False)
multiPngs('MirandolaFigs')
pyplot.show()
#########################################################################################
### Discussion on benchmark ###
#########################################################################################
if DiscussionCompute:
'''
First, we test only with the same model for every cases. The dataset is noisy!