-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
91 lines (67 loc) · 2.89 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
from flask import Flask, render_template, request, jsonify
from PyPDF2 import PdfReader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.chains.question_answering import load_qa_chain
from langchain.llms import OpenAI
import os
import traceback
import requests
import json
app = Flask(__name__)
os.environ["OPENAI_API_KEY"] = "sk-rok" # Replace with your actual key
JINA_RERANKER_URL = "https://api.jina.ai/v1/rerank"
JINA_API_KEY = "jina_ee32c8d9f5cb4a8ea2e3919666331fb2jijtSGniMqZ8maS9_l7Ho0EiTyksL" # Replace with your actual Jina API key
@app.route("/", methods=["GET", "POST"])
def index():
if request.method == "POST":
try:
if "file" not in request.files:
return jsonify({"error": "No file uploaded"}), 400
file = request.files["file"]
if file.filename.split(".")[-1].lower() != "pdf":
return jsonify({"error": "Uploaded file is not a PDF"}), 400
pdf_reader = PdfReader(file)
raw_text = ""
for page in pdf_reader.pages:
content = page.extract_text()
if content:
raw_text += content
text_splitter = CharacterTextSplitter(
separator="\n", chunk_size=800, chunk_overlap=200, length_function=len
)
texts = text_splitter.split_text(raw_text)
embeddings = OpenAIEmbeddings()
document_search = FAISS.from_texts(texts, embeddings)
chain = load_qa_chain(OpenAI(), chain_type="stuff")
query = request.form["query"]
docs = document_search.similarity_search(query, k=5)
text_list = [doc.page_content for doc in docs]
reranked_results = jina_rerank(query, text_list)
print(reranked_results)
most_relevant_doc = docs[reranked_results["results"][0]["index"]]
answer = chain.run(input_documents=[most_relevant_doc], question=query)
return jsonify({"answer": answer})
except Exception as e:
app.logger.error(f"An error occurred: {str(e)}")
app.logger.error(traceback.format_exc())
return jsonify({"error": str(e)}), 500
return render_template("index.html")
def jina_rerank(query: str, text_list: list):
headers = {
"Content-Type": "application/json",
"Authorization": "Bearer jina_ee32c8d9f5cb4a8ea2e3919666331fb2jijtSGiMqZ8maS9_l7Ho0EiTyksL",
}
json_data = {
"model": "jina-reranker-v2-base-multilingual",
"documents": text_list,
"query": query,
"top_n": 3,
}
response = requests.post(
JINA_RERANKER_URL, headers=headers, data=json.dumps(json_data)
)
return response.json()
if __name__ == "__main__":
app.run(host='0.0.0.0',port=5000)