forked from RichieHakim/s2p_on_o2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathremote_run_s2p.py
105 lines (70 loc) · 2.54 KB
/
remote_run_s2p.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# check environment
import os
print(f'Conda Environment: ' + os.environ['CONDA_DEFAULT_ENV'])
### batch_run stuff
from pathlib import Path
import sys
path_script, path_params, dir_save = sys.argv
dir_save = Path(dir_save)
import json
with open(path_params, 'r') as f:
params = json.load(f)
import shutil
shutil.copy2(path_script, str(Path(dir_save) / Path(path_script).name));
def write_to_log(text, path_log, mode='a', start_on_new_line=True, pref_print=True, pref_save=True):
if pref_print:
print(text)
if pref_save:
with open(path_log, mode=mode) as log:
if start_on_new_line==True:
log.write('\n')
log.write(text)
### script
import suite2p
from functools import partial
import time
write_to_log = partial(write_to_log, path_log=str(dir_save / 'log.txt'), pref_print=params['prefs']['log_print'], pref_save=params['prefs']['log_save'])
ops = suite2p.default_ops()
for key in params['ops']:
ops[key] = params['ops'][key]
db = params['db']
db['save_path0'] = str(dir_save)
write_to_log(f'BATCH RUN STARTED. time: {time.ctime()}')
write_to_log(' ')
output_ops = suite2p.run_s2p(ops=ops, db=db)
write_to_log(f'BATCH RUN FINISHED. time: {time.ctime()}')
write_to_log(' ')
##################
#### PLOTTING ####
##################
## TODO: save images of output_ops stuff
import numpy as np
import matplotlib.pyplot as plt
stats_file = Path(output_ops['save_path']).joinpath('stat.npy')
iscell = np.load(Path(output_ops['save_path']).joinpath('iscell.npy'), allow_pickle=True)[:, 0].astype(int)
stats = np.load(stats_file, allow_pickle=True)
n_cells = len(stats)
Ly, Lx = output_ops['Ly'], output_ops['Lx']
h = np.random.rand(n_cells)
hsvs = np.zeros((2, Ly, Lx, 3), dtype=np.float32)
for i, stat in enumerate(stats):
ypix, xpix, lam = stat['ypix'], stat['xpix'], stat['lam']
hsvs[iscell[i], ypix, xpix, 0] = h[i]
hsvs[iscell[i], ypix, xpix, 1] = 1
hsvs[iscell[i], ypix, xpix, 2] = lam / lam.max()
from colorsys import hsv_to_rgb
rgbs = np.array([hsv_to_rgb(*hsv) for hsv in hsvs.reshape(-1, 3)]).reshape(hsvs.shape)
plt.figure(figsize=(18,18))
plt.subplot(3, 1, 1)
plt.imshow(output_ops['max_proj'], cmap='gray')
plt.title("Registered Image, Max Projection")
plt.subplot(3, 1, 2)
plt.imshow(rgbs[1])
plt.title("All Cell ROIs")
plt.subplot(3, 1, 3)
plt.imshow(rgbs[0])
plt.title("All non-Cell ROIs");
plt.tight_layout()
plt.savefig(str(dir_save / 'batch_run_output.png'))
write_to_log(f'SAVING FIGURES FINISHED. time: {time.ctime()}')
write_to_log('RUN COMPLETE')