-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathAnnotMoudle.py
1227 lines (1181 loc) · 63.4 KB
/
AnnotMoudle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Author: Zhang Chengsheng, @2019.12.19
release: 2020.03.25
"""
import utils
import math
def ss_db_patch(exon_db):
ss_start_db = []
ss_end_db = []
for idx in exon_db:
i,j = exon_db[idx]
if i not in ss_start_db:
ss_start_db.append(i)
if j not in ss_end_db:
ss_end_db.append(j)
return sorted(ss_start_db),sorted(ss_end_db)
class Isoform_anno:
def __init__(self,id,string,fabuffer,faidxDict):
self.id = id
self.string = string
self.fabuffer = fabuffer
self.faidxDict = faidxDict
self.SJtxt = ''
self.chrom_mask = []
self._origin_string_parse()
self.isoform_length = sum(self.exons_length)
self._bias_define()
self._bias_calc()
self.merge = 0
self._pure_info()
self.anno = {}
self.db_used = {}
self.parts_idx = {}
self.subtypes = {1: '',
11: '右边缘外显子',
12: '左边缘外显子',
18: '左边缘外显子融合',
19: '右边缘外显子融合',
20: '两端剪切点都已知的新外显子',
21: '内含子保留',
31: '左端新剪切点',
32: '右端新剪切点',
35: '左端不对齐延伸外显子',
36: '右端不对齐延伸外显子',
40: '双端新剪切点',
41: '双端新剪切点基因内无注释的新外显子',
42: '左边缘外显子新剪切点',
43: '右边缘外显子新剪切点',
44: '单外显子转录本双端不对齐',
50: '边缘双端不对齐', # 已经没有这个了
60: '双端新剪切点基因外无注释的新外显子',
100: 'BUG_100',
101: 'BUG_101',
200: '无注释',
400: 'BUG_NA'
}
def _origin_string_parse(self):
"""解析并返回原始真实bed分段"""
THRESHOLD_EXONS_BIAS = 3
lines = self.string.rstrip().split('\n')
self.chroms = []
self.ref_start = []
self.ref_end = []
self.seq_start = []
self.seq_end = []
self.strands = []
self.unmapped_length = 0
self.mask_length = 0
self.exons_length = []
self.bias_start = []
self.bias_end = []
for line in lines:
mask = 1
if mask:
line = self._0_mask(line)
s = line.rstrip().split('\t')
if s[0] == '0': #0:unmapped,-1:masked
self.unmapped_length += abs(int(s[7])-int(s[6]))
elif s[0] == '-1':
self.mask_length += abs(int(s[7])-int(s[6]))
self.chroms.append(s[0])
self.ref_start.append(int(s[1]))
self.ref_end.append(int(s[2]))
self.strands.append(s[5])
self.seq_start.append(int(s[6]))
self.seq_end.append(int(s[7]))
self.exons_length.append(int(s[7])-int(s[6])+1)
self.bias_start.append(0)
self.bias_end.append(0)
def _0_mask(self,line):
"""对单外显子短于阈值的做mask处理"""
MIN_EXON_LENGHT = 10
s = line.rstrip().split('\t')
if abs(int(s[7])-int(s[6])) <= MIN_EXON_LENGHT:
return '-1\t0\t0\t{}\t*\t0\t{}\t{}'.format(s[3],s[6],s[7])
else:
return line
def _bias_define(self):
"""根据exons mask情况确定Splice Junction(SJ)的可变范围"""
for idx,i in enumerate(self.exons_length):
if self.chroms[idx] == '-1':
if idx-1>=0:
if self.chroms[idx-1] not in ['-1','0']:
if self.strands[idx-1] == '1':
self.bias_end[idx-1] = i
else:
self.bias_start[idx-1] = i
if idx+1<len(self.exons_length):
if self.chroms[idx+1] not in ['-1','0']:
if self.strands[idx+1] == '1':
self.bias_start[idx+1] = i
else:
self.bias_end[idx+1] = i
def _bias_calc(self):
"""计算返回外显子SJ的可信区间"""
MAX_NATURAL_EXONS_BIAS_THRESHOLD = 0 # 剪切位点误差范围
self.bias_start_region = []
self.bias_end_region = []
for idx, i in enumerate(self.bias_start):
self.bias_start_region.append([self.ref_start[idx]-i-MAX_NATURAL_EXONS_BIAS_THRESHOLD,self.ref_start[idx]+MAX_NATURAL_EXONS_BIAS_THRESHOLD])
for idx, i in enumerate(self.bias_end):
self.bias_end_region.append([self.ref_end[idx]-MAX_NATURAL_EXONS_BIAS_THRESHOLD,self.ref_end[idx]+i+MAX_NATURAL_EXONS_BIAS_THRESHOLD])
def _pure_info(self,chrom_mask=[]):
MIN_INTRON = 50
self.CHROMS = []
self.REF_START = []
self.REF_END = []
self.SEQ_START = []
self.SEQ_END = []
self.STRANDS = []
self.EXONS_LENGTH = []
self.BIAS_START = []
self.BIAS_END = []
self.BIAS_START_REGION = []
self.BIAS_END_REGION = []
for idx,i in enumerate(self.chroms):
if i not in ['0','-1'] and i not in chrom_mask:
self.CHROMS.append(self.chroms[idx])
self.REF_START.append(self.ref_start[idx])
self.REF_END.append(self.ref_end[idx])
self.SEQ_START.append(self.seq_start[idx])
self.SEQ_END.append(self.seq_end[idx])
self.STRANDS.append(self.strands[idx])
self.EXONS_LENGTH.append(self.exons_length[idx])
self.BIAS_START.append(self.bias_start[idx])
self.BIAS_END.append(self.bias_end[idx])
self.BIAS_START_REGION.append(self.bias_start_region[idx])
self.BIAS_END_REGION.append(self.bias_end_region[idx])
delete_idx = []
for idx,i in enumerate(self.CHROMS):
if not idx:
continue
if self.CHROMS[idx] == self.CHROMS[idx-1] and self.STRANDS[idx] == self.STRANDS[idx-1]:
strand = self.STRANDS[idx]
if strand in [-1,'-1']:
gap1 = abs(self.REF_START[idx-1] - self.REF_END[idx])
gap2 = abs(gap1 - abs(self.SEQ_START[idx] - self.SEQ_END[idx-1]))
else:
gap1 = abs(self.REF_START[idx] - self.REF_END[idx-1])
gap2 = abs(gap1 - abs(self.SEQ_START[idx] - self.SEQ_END[idx-1]))
if gap1 <= MIN_INTRON or gap2 <= MIN_INTRON:
new_ref_start = min(self.REF_START[idx],self.REF_START[idx-1],self.REF_END[idx],self.REF_END[idx-1])
new_ref_end = max(self.REF_START[idx],self.REF_START[idx-1],self.REF_END[idx],self.REF_END[idx-1])
new_seq_start = min(self.SEQ_START[idx],self.SEQ_START[idx-1],self.SEQ_END[idx],self.SEQ_END[idx-1])
new_seq_end = max(self.SEQ_START[idx],self.SEQ_START[idx-1],self.SEQ_END[idx],self.SEQ_END[idx-1])
self.REF_START[idx-1] = new_ref_start
self.REF_END[idx-1] = new_ref_end
self.SEQ_START[idx-1] = new_seq_start
self.SEQ_END[idx-1] = new_seq_end
if new_ref_start == self.REF_START[idx]:
self.BIAS_START[idx-1] = self.BIAS_START[idx]
self.BIAS_START_REGION[idx-1] = self.BIAS_START_REGION[idx]
else:
self.BIAS_END[idx-1] = self.BIAS_END[idx]
self.BIAS_END_REGION[idx-1] = self.BIAS_END_REGION[idx]
delete_idx.append(idx)
for idx in sorted(delete_idx,reverse=1):
self._info_refresh(idx)
if delete_idx: self.merge = 1
#####
delete_idx = []
for idx, i in enumerate(self.CHROMS):
if not idx or idx+1 == len(self.CHROMS):
continue
idx1,idx2 = idx-1,idx+1
if self.CHROMS[idx1] == self.CHROMS[idx2] and self.STRANDS[idx1] == self.STRANDS[idx2]:
strand = self.STRANDS[idx1]
if strand in [1,'1']:
gap1 = abs(self.REF_START[idx2] - self.REF_END[idx1])
gap2 = abs(gap1 - abs(self.SEQ_START[idx2] - self.SEQ_END[idx1]))
else:
gap1 = abs(self.REF_START[idx1] - self.REF_END[idx2])
gap2 = abs(gap1 - abs(self.SEQ_START[idx2] - self.SEQ_END[idx1]))
if gap1 <= MIN_INTRON or gap2 <= MIN_INTRON:
new_ref_start = min(self.REF_START[idx1], self.REF_START[idx2], self.REF_END[idx1],self.REF_END[idx2])
new_ref_end = max(self.REF_START[idx1], self.REF_START[idx2], self.REF_END[idx1],self.REF_END[idx2])
new_seq_start = min(self.SEQ_START[idx1], self.SEQ_START[idx2], self.SEQ_END[idx1],self.SEQ_END[idx2])
new_seq_end = max(self.SEQ_START[idx1], self.SEQ_START[idx2], self.SEQ_END[idx1],self.SEQ_END[idx2])
self.REF_START[idx2] = new_ref_start
self.REF_END[idx2] = new_ref_end
self.SEQ_START[idx2] = new_seq_start
self.SEQ_END[idx2] = new_seq_end
if new_ref_start == self.REF_START[idx1]:
self.BIAS_START[idx2] = self.BIAS_START[idx1]
self.BIAS_START_REGION[idx2] = self.BIAS_START_REGION[idx1]
else:
self.BIAS_END[idx2] = self.BIAS_END[idx1]
self.BIAS_END_REGION[idx2] = self.BIAS_END_REGION[idx1]
delete_idx.append(idx)
delete_idx.append(idx2)
for idx in sorted(list(set(delete_idx)), reverse=1):
self._info_refresh(idx)
if delete_idx: self.merge = 1
def _info_refresh(self,idx):
"""一次一个删除更新列表,不可逆"""
self.mask_length += self.seq_end[idx] - self.seq_start[idx] + 1
del self.CHROMS[idx]
del self.REF_START[idx]
del self.REF_END[idx]
del self.SEQ_START[idx]
del self.SEQ_END[idx]
del self.STRANDS[idx]
del self.EXONS_LENGTH[idx]
del self.BIAS_START[idx]
del self.BIAS_END[idx]
del self.BIAS_START_REGION[idx]
del self.BIAS_END_REGION[idx]
def _break_point_cluster(self):
"""isoform根据断点(异染色体、大段gap、不同链性、染色体重叠,等)分类"""
classification = 1
if not self.CHROMS:
return classification
if len(self.CHROMS) > 1: # mulit-exon
chrom_num = self._multi_valid_chroms_check()
gap_num, self.parts_idx = self._gap_check()
if not self.CHROMS: # 排除一种分成几段但是哪段都不行的情况,p.s.但是把单染色体映射短于200的也过滤掉了
return 1
if chrom_num > 1: # 多染色体映射
if gap_num > 4:
return -5 # 复杂的融合
return -2 # 跨染色体融合
else: # 单染色体映射
if (self.mask_length + self.unmapped_length) / self.isoform_length > 0.5:
return 2 # 无效区域过长
if gap_num > 4:
return 3 # 复杂的新转录本
elif gap_num: # 分成两段及以上
# 疑似同染色体远距离融合||新转录本
return -1
elif len(self.CHROMS) == 1: # 单外显子
return 10
else: # 仅一段
# 正常转录本
return 0
##################### 0 ######################
else: # mono-exon
chrom_num = self._multi_valid_chroms_check()
gap_num, self.parts_idx = self._gap_check()
return 10
def _debug_run(func):
def wrap(self,*args):
try:
res = func(self,*args)
return res
except:
print(self.id)
return [0,0,0,0,0,0,0]
return wrap
def _multi_valid_chroms_check(self):
"""检查是否存在多染色体映射,同时检查其长度 将低于阈值的分段移除"""
if len(set(self.CHROMS)) == 1:
return 1
FUSION_MIN_LENGTH_THRESHOLD = 200
self.CHROMS_CLUSTER = {}
for _idx,chrom in enumerate(self.CHROMS):
if chrom not in self.CHROMS_CLUSTER:
self.CHROMS_CLUSTER[chrom] = self.EXONS_LENGTH[_idx]
else:
self.CHROMS_CLUSTER[chrom] += self.EXONS_LENGTH[_idx]
chrom_num = 0
for chrom in self.CHROMS_CLUSTER:
if self.CHROMS_CLUSTER[chrom] > FUSION_MIN_LENGTH_THRESHOLD:
chrom_num += 1
else:
self.chrom_mask.append(chrom)
self._pure_info(chrom_mask=self.chrom_mask)
return chrom_num
def _calc_length(self,dict_in):
length = 0
for i in dict_in:
length += abs(dict_in[i][-1] - dict_in[i][0])+1
return length
def _gap_check(self):
start = self.REF_START
end = self.REF_END
strand = self.STRANDS
chrom = self.CHROMS
MAX_GAP_LENGTH = 1000000
MIN_ISOFORM_LENGTH = 200
res_idx = {0:[]}
indicator = 0
for _idx,i in enumerate(start):
if not i:
pass
if not _idx:
res_idx[indicator].append(_idx)
continue
gap1 = abs(start[_idx] - start[_idx-1])
gap2 = abs(end[_idx] - end[_idx - 1])
if gap1 > MAX_GAP_LENGTH or gap2 > MAX_GAP_LENGTH or strand[_idx] != strand[_idx-1] or chrom[_idx] != chrom[_idx-1]:
indicator += 1
res_idx[indicator] = [_idx]
else:
res_idx[indicator].append(_idx)
###### 段内长度检查 ######
remove_list = []
idx_list = []
for i in res_idx:
length = 0
for idx in res_idx[i]:
length += abs(end[idx] - start[idx])
if length < MIN_ISOFORM_LENGTH:
for idx in res_idx[i]:
idx_list.append(idx)
remove_list.append(i)
for i in remove_list:
res_idx.pop(i)
for i in sorted(idx_list,reverse=1):
self._info_refresh(i)
if idx_list:
gap_num, res_idx = self._gap_check()
else:
gap_num = len(res_idx)-1
return gap_num,res_idx
def anno_used_add(self,db,chrom):
"""准备后续画图用的注释库"""
for gene in db:
if gene not in self.db_used:
gene_type = db[gene][0]
strand = db[gene][1]
ts = db[gene][3]
self.db_used[gene] = {}
for t in ts:
if t not in self.db_used[gene]:
self.db_used[gene][t] = {}
exons = ts[t][2]
chroms = [chrom] * len(exons)
strands = [strand] * len(exons)
left = [exons[i][0] for i in exons]
right = [exons[i][1] for i in exons]
anno = [''] * len(exons)
self.db_used[gene][t]['info'] = {}
self.db_used[gene][t]['info'] = [gene, t, gene_type, '']
self.db_used[gene][t]['chrom'] = chroms
self.db_used[gene][t]['strand'] = strands
self.db_used[gene][t]['start'] = left
self.db_used[gene][t]['end'] = right
self.db_used[gene][t]['anno'] = anno
def reads_info(self):
info = {}
info['info'] = [self.best_gene,self.best_transcript,self.classification,self.subtype]
info['chrom'] = self.CHROMS
info['strand'] = self.STRANDS
info['start'] = self.REF_START
info['end'] = self.REF_END
info['anno'] = self.exon_anno
info['parts_idx'] = self.parts_idx
return info
def init_parts_anno(self,flag=0):
self.EXONS_TYPE = [200 for i in self.REF_START]
self.correct_REF_START = [-1 for i in self.REF_START]
self.correct_REF_END = [-1 for i in self.REF_START]
self.GTAG_START = [-1 for i in self.REF_START]
self.GTAG_END = [-1 for i in self.REF_START]
self.SJknown = [-1 for i in range(len(self.REF_START)-1)]
self.SJcanonical = [-1 for i in range(len(self.REF_START)-1)]
self.gene_left_right_edge_flag = [0 for i in self.REF_START]
self.best_anno_info = ['NA','NA','NA','NA','NA','NA','NA','NA']
self.classification = 'NA'
self.subtype = 'NA'
self.best_gene = 'NA'
self.best_transcript = 'NA'
self.multiAnno = {}
self.multiAnnoTXT = ''
self.anno_chrom = 'NA'
self.anno_strand = 'NA'
self.diff_to_gene_start = 'NA'
self.diff_to_gene_end = 'NA'
self._5_ref_draft = 'NA'
self._3_ref_draft = 'NA'
self._5_seq_draft = 'NA'
self._3_seq_draft = 'NA'
self.exon_anno = ['' for i in self.REF_START]
self.parts_anno = {}
self.part_best = {}
if flag <= 0 or flag == 10:
for part in self.parts_idx:
self.parts_anno[part] = {}
self.part_best[part] = []
for idx in self.parts_idx[part]:
self.parts_anno[part][idx] = {'exon_type': 200,
'correct_REF_START': -1,
'correct_REF_END': -1,
'ss_start': 0,
'ss_end': 0,
'exon_miss_5': 'NA',
'exon_miss_3': 'NA',
'GTAG_START': 'NA',
'GTAG_END': 'NA',
}
def anno_func_v1(self,REF_START, REF_END, CHROMS,STRANDS, BIAS_START_REGION, BIAS_END_REGION, anno_db,part,idxs,mono=0):
best_gene = 'NA'
best_transcript = 'NA'
if not anno_db:
best_gene = '{}:{}-{}'.format(CHROMS[0], min(REF_START), max(REF_END))
for IDX in idxs:
self.parts_anno[part][IDX]['exon_type'] = 60
return best_gene, [best_transcript,0,['?'],[1],['NA','NA','NA','NA','NA','NA','NA','NA']]
elif len(anno_db) > 5:
## 基因注释过多,可能会卡,则在此设限
pass
def sj_db_mk(transcripts):
sj_db = []
for transcript in transcripts:
exon_idx = transcripts[transcript][3]
for idx in range(len(exon_idx)):
if not idx:
continue
sj = '{}-{}'.format(exon_idx[idx-1],exon_idx[idx])
if sj not in sj_db:
sj_db.append(sj)
return sj_db
def sj_check(sj_db,sjs):
sj_flag = []
wtf = []
flag = 1
for idx in range(len(sjs)):
if not isinstance(sjs[list(sjs)[idx]], int):
if 'U' in sjs[list(sjs)[idx]] or 'NA' in sjs[list(sjs)[idx]]:
sj_flag.append(0)
if idx:
if '-' in str(sjs[list(sjs)[idx]]):
sj = '{}-{}'.format(sjs[list(sjs)[idx-1]],sjs[list(sjs)[idx]].split('-')[0])
if sj not in sj_db:
wtf.append(0)
else:
wtf.append(1)
if not idx:
continue
st = sjs[list(sjs)[idx - 1]].split('-')[-1] if '-' in str(sjs[list(sjs)[idx-1]]) else sjs[list(sjs)[idx]]
sj = '{}-{}'.format(sjs[list(sjs)[idx-1]],st)
if sj not in sj_db:
wtf.append(0)
sj_flag.append(0)
else:
wtf.append(1)
sj_flag.append(1)
if sj_flag and 0 in sj_flag:
flag = 0
return flag,wtf
def ss_in_or_not(ss_db_in,point_start,point_end):
"""检查断点是否在目标基因区段内"""
a,b = min(ss_db_in),max(ss_db_in)
flag_start = 1 if a < point_start[0] < b or a < point_start[-1] < b else 0
flag_end = 1 if a < point_end[0] < b or a < point_end[-1] < b else 0
flag_end = 1 if min(point_start) < a < max(point_end) or min(point_start) < b < max(point_end) else flag_end
return flag_start,flag_end
def gene_left_right_edge_flag_make(gene_left_right_edge_flag,gene_exon_in):
left_idx,right_idx = 0,0
for _idx,IDX in enumerate(gene_left_right_edge_flag):
if gene_exon_in[_idx] != 0:
left_idx = IDX
break
for _idx, IDX in enumerate(list(gene_left_right_edge_flag)[::-1]):
if gene_exon_in[::-1][_idx] != 0:
right_idx = IDX
break
if STRANDS[0] in [1,'1']:
gene_left_right_edge_flag[left_idx] = -1 if mono != 10 else 0
gene_left_right_edge_flag[right_idx] = 1 if mono != 10 else 0
else:
gene_left_right_edge_flag[left_idx] = 1 if mono != 10 else 0
gene_left_right_edge_flag[right_idx] = -1 if mono != 10 else 0
return gene_left_right_edge_flag
def exon_check(exon_db,start,end,start_flag=0):
"""用于检查每个外显子与注释的比较情况"""
EXON_DRAFT_1 = 10
idx_start_list = {}
idx_end_list = {}
ss_start,ss_end = 0,0 # 剪切点是否已知,0:novel 1:known
for _x,idx in enumerate(exon_db):
ref_start, ref_end = exon_db[idx]
if start[0] <= ref_start <= start[-1]:
start_draft = 0
else:
start_draft = min(start[0] - ref_start, start[-1] - ref_start) if start[0] - ref_start > 0 else max(start[0] - ref_start, start[-1] - ref_start)
if end[0] <= ref_end <= end[-1]:
end_draft = 0
else:
end_draft = min(end[0] - ref_end, end[-1] - ref_end) if end[0] - ref_end > 0 else max(end[0] - ref_end, end[-1] - ref_end)
flag_start_1 = 1 if abs(start_draft) <= EXON_DRAFT_1 else 0
flag_end_1 = 1 if abs(end_draft) <= EXON_DRAFT_1 else 0
if not _x:
start_draft_min = start_draft
start_point_most = exon_db[idx][0]
end_draft_min = end_draft
end_point_most = exon_db[idx][-1]
else:
start_draft_min, start_point_most = [start_draft, exon_db[idx][0]] if abs(start_draft) <= abs(start_draft_min) else [start_draft_min, start_point_most]
end_draft_min, end_point_most = [end_draft, exon_db[idx][-1]] if abs(end_draft) <= abs(end_draft_min) else [end_draft_min, end_point_most]
if end_point_most < start_point_most:
end_draft_min, end_point_most = [end_draft, exon_db[idx][-1]]
if start_flag == -1:
if flag_end_1:
idx_end_list[idx] = end_draft
idx_start_list[idx] = start_draft
continue
elif start_flag == 1:
if flag_start_1:
idx_start_list[idx] = start_draft
idx_end_list[idx] = end_draft
continue
if flag_start_1:
idx_start_list[idx] = start_draft
if flag_end_1:
idx_end_list[idx] = end_draft
exon_id_anno = {} # {exon_idx:[left_draft,rigth_draft,subtype]}
## subtype: 0:正常,1:双端对齐,2:单端对齐,3:双端不对齐
default_score = 1000
if idx_start_list and idx_end_list:
ss_start,ss_end = 1,1
for m in idx_start_list:
for n in idx_end_list:
id,subtype = [m,0] if m == n else ['{}-{}'.format(m,n),1]
exon_id_anno[id] = [idx_start_list[m],idx_end_list[n],subtype]
elif idx_start_list:
ss_start,ss_end = 1,0
for m in idx_start_list:
id = '{}-SU'.format(m)
exon_id_anno[id] = [idx_start_list[m],default_score,2]
elif idx_end_list:
ss_start,ss_end = 0,1
for m in idx_end_list:
id = 'SU-{}'.format(m)
exon_id_anno[id] = [default_score,idx_end_list[m],2]
else:
ss_start,ss_end = 0,0
id = 'DU'
exon_id_anno[id] = [default_score,default_score,3]
return exon_id_anno,ss_start,ss_end
def transcript_check(transcripts,gene_exon_idx_anno,sj_db):
best_res = []
for transcript in transcripts:
exon_idxs = transcripts[transcript][3]
t_start,t_end = transcripts[transcript][1]
t_map_list = [] # 外显子与注释的匹配情况,-2超范围,正常id:外显子编号,-1没匹配上
for _idx,IDX in enumerate(gene_exon_idx_anno):
ov = self.check_overlap([t_start,t_end],[self.REF_START[IDX],self.REF_END[IDX]])
if not ov:
t_map_list.append(-2)
continue
else:
for id in gene_exon_idx_anno[IDX]:
if id in exon_idxs:
t_map_list.append(id)
break
else:
t_map_list.append(-1)
if self.list_intersection(t_map_list, exon_idxs): # 该转录本可作为候选最佳注释
ref_exon_num = len(exon_idxs)
e_idxs = exon_idxs.index(t_map_list[0]),exon_idxs.index(t_map_list[-1])
exon_miss_5,exon_miss_3 = min(e_idxs),len(exon_idxs)-max(e_idxs)-1
score = sum([(abs(gene_exon_idx_anno[IDX][t_map_list[idx]][0]) + abs(gene_exon_idx_anno[IDX][t_map_list[idx]][1])) for idx,IDX in enumerate(list(gene_exon_idx_anno))])
miss_exon_num = ref_exon_num - len(REF_START)
reflength = self._calc_length(transcripts[transcript][2])
diff_to_transcript_end = max(REF_END) - t_end
diff_to_transcript_start = t_start - min(REF_START)
strand = STRANDS[0]
diff_to_transcript_start, diff_to_transcript_end = [diff_to_transcript_start,diff_to_transcript_end] if strand == 1 or strand == '1' else [diff_to_transcript_end, diff_to_transcript_start]
best_res.append([transcript,miss_exon_num,score,t_map_list,ref_exon_num,reflength,diff_to_transcript_start, diff_to_transcript_end,exon_miss_5,exon_miss_3])
best_transcript = 'NA'
exon_type_dict = {}
best_gene_exon_idx_anno = {}
if best_res:
best_res = sorted(best_res,key=lambda x:(x[1],x[2]))
self.multiAnnot(gene=gene,res=best_res,mode=1) # add in V0.0.2
best_transcript_anno = best_res[0]
transcript, miss_exon_num, score, t_map_list, ref_exon_num, reflength, diff_to_transcript_start, diff_to_transcript_end,exon_miss_5,exon_miss_3 = best_transcript_anno
anno_info = [ref_exon_num, reflength, diff_to_transcript_start, diff_to_transcript_end,exon_miss_5,exon_miss_3]
for _idx,IDX in enumerate(gene_exon_idx_anno):
best_gene_exon_idx_anno[IDX] = [t_map_list[_idx],gene_exon_idx_anno[IDX][t_map_list[_idx]]]
best_transcript = best_transcript_anno[0]
best_idx = best_transcript_anno[3]
for IDX in gene_exon_idx_anno:
if gene_left_right_edge_flag[IDX]:
edge_add = 0 if gene_left_right_edge_flag[IDX] == 1 else 1
overlap_exons = []
for _idx1 in transcripts[best_transcript][2]:
if self.check_overlap(transcripts[best_transcript][2][_idx1], [self.REF_START[IDX],self.REF_END[IDX]]):
overlap_exons.append(_idx1)
if len(overlap_exons) > 1:
exon_type_dict[IDX] = 18+edge_add # 边缘外显子融合 18左端,19右端
else:
exon_type_dict[IDX] = 11+edge_add # 正常边缘外显子 11左端,12右端
else:
exon_type_dict[IDX] = 1
else:
miss_exon_num = 10000
best_idx = dict([(IDX,sorted(gene_exon_idx_anno[IDX], key=lambda x: (gene_exon_idx_anno[IDX][x][2],abs(gene_exon_idx_anno[IDX][x][1]) + abs(gene_exon_idx_anno[IDX][x][0])))[0]) for IDX in gene_exon_idx_anno])
score = sum([abs(gene_exon_idx_anno[IDX][best_idx[IDX]][0])+abs(gene_exon_idx_anno[IDX][best_idx[IDX]][1]) for IDX in gene_exon_idx_anno])
anno_info = ['NA','NA','NA','NA','NA','NA']
t_map_list = [best_idx[i] for i in best_idx]
for _idx,IDX in enumerate(gene_exon_idx_anno):
best_gene_exon_idx_anno[IDX] = [t_map_list[_idx],gene_exon_idx_anno[IDX][t_map_list[_idx]]]
for IDX in best_idx:
if isinstance(best_idx[IDX],int): # 正常外显子
exon_type = 1
if gene_left_right_edge_flag[IDX]:
edge_add = 0 if gene_left_right_edge_flag[IDX] == 1 else 1
exon_type = 11 + edge_add # 正常边缘外显子 11左端,12右端
elif 'U' in best_idx[IDX]: # 双端不对齐+右端不对齐+左端不对齐
overlap_exons = []
for _idx1 in exon_db:
if self.check_overlap(exon_db[_idx1], [self.REF_START[IDX], self.REF_END[IDX]]):
overlap_exons.append(_idx1)
if 'DU' in best_idx[IDX]: # 双端不对齐
exon_type = 40
if gene_left_right_edge_flag[IDX]:
edge_add = 0 if gene_left_right_edge_flag[IDX] == 1 else 1
exon_type = 42 + edge_add
elif not overlap_exons:
exon_type = 41 # 平白无故多出来的外显子
if mono == 10:
exon_type = 44 # 单外显子转录本双端不对齐
elif 'SU' in best_idx[IDX]: # 单端不对齐
bdq_add = 0 if 'SU-' in best_idx[IDX] else 1 # 左端不对齐+0,右端不对齐+1
if not overlap_exons:
exon_type = 41 # 平白无故多出来的外显子,当然这种情况是不会发生的
else:
exon_max_length = 0
for _idx2 in overlap_exons:
exon_max_length = abs(exon_db[_idx2][-1] - exon_db[_idx2][0]) if abs(exon_db[_idx2][-1] - exon_db[_idx2][0]) > exon_max_length else exon_max_length
if abs(self.REF_END[IDX] - self.REF_START[IDX]) - exon_max_length > 50:
exon_type = 35+bdq_add ## exon_extension
else:
exon_type = 31+bdq_add ## 正常单端对齐外显子,短一截,后续需要讨论exon二合一问题
else: # 不存在这种情况
exon_type = 101
elif '-' in best_idx[IDX]: # 两段端都对齐但分属不同外显子
exon_type = 20 # 两端都对齐但分属不同外显子,又不是外显子保留
se_idx = [int(i) for i in best_idx[IDX].split('-')]
for transcript in transcripts:
tsc_idx = transcripts[transcript][3]
if se_idx[0] in tsc_idx and se_idx[1] in tsc_idx:
exon_type = 21 # 内含子保留
break
else: # 不知道是啥
exon_type = 100
exon_type_dict[IDX] = exon_type
sj_flag,sjs = 0,[]
if [i for i in exon_type_dict if exon_type_dict[i] > 19]:
sj_flag,sjs = sj_check(sj_db, best_idx)
return best_transcript,score,sj_flag,sjs,exon_type_dict,best_gene_exon_idx_anno,anno_info,miss_exon_num
anno_score = {}
for gene in anno_db:
anno_score[gene] = {}
gene_region = anno_db[gene][2]
transcripts = anno_db[gene][3]
ss_db = anno_db[gene][5]
exon_db = anno_db[gene][4]
sj_db = sj_db_mk(transcripts)
gene_exon_start_in,gene_exon_end_in = {},{} # 外显子是否在参考注释区段内{idx:flag} 1:in,0:out
gene_exon_id_anno = {} # 外显子注释参考{idx:{exon_idx:[left_draft,right_draft,subtype]}} draft:seq-ref,更多注释在exon_check()
gene_ss_start,gene_ss_end = {},{} # 外显子剪切点是否已知,用于判定NNC。{idx:flag} 1:known,0:novel
sj_flag = 0 # 是否存在新的SJ,1:存在,0:不存在
gene_left_right_edge_flag = {} # 是否为边缘外显子,-1:左端,1:右端,0:中间
for _idx,IDX in enumerate(idxs):
flag_start, flag_end = ss_in_or_not(ss_db, BIAS_START_REGION[_idx], BIAS_END_REGION[_idx])
gene_exon_start_in[IDX] = flag_start
gene_exon_end_in[IDX] = flag_end
gene_left_right_edge_flag[IDX] = 0
gene_exon_in = [gene_exon_start_in[i] + gene_exon_end_in[i] for i in gene_exon_start_in]
gene_left_right_edge_flag = gene_left_right_edge_flag_make(gene_left_right_edge_flag, gene_exon_in)
for _idx,IDX in enumerate(idxs):
exon_id_anno,ss_start,ss_end = exon_check(exon_db, BIAS_START_REGION[_idx], BIAS_END_REGION[_idx], start_flag=gene_left_right_edge_flag[IDX])
gene_exon_id_anno[IDX] = exon_id_anno
gene_ss_start[IDX] = ss_start
gene_ss_end[IDX] = ss_end
best_transcript, score, sj_flag,sjs, exon_type_dict, best_gene_exon_idx_anno, anno_info,miss_exon_num = transcript_check(transcripts, gene_exon_id_anno,sj_db)
diff_to_gene_start = max(REF_END) - max(gene_region)
diff_to_gene_end = min(gene_region) - min(REF_START)
diff_to_gene_start, diff_to_gene_end = [diff_to_gene_start, diff_to_gene_end] if STRANDS[0] == 1 else [diff_to_gene_end, diff_to_gene_start]
anno_info = anno_info + [diff_to_gene_start, diff_to_gene_end]
anno_score[gene] = [best_transcript,score,best_gene_exon_idx_anno,sj_flag,sjs,gene_ss_start,gene_ss_end,exon_type_dict,gene_exon_start_in,gene_exon_end_in,anno_info,gene_left_right_edge_flag,miss_exon_num]
for idx,gene in enumerate(sorted(anno_score,key=lambda x:(anno_score[x][-1],anno_score[x][1]))):
if anno_score[gene][0] != 'NA':
best_gene = gene
break
else:
if not idx:
best_gene = gene
else:
if anno_score[gene][1] == 'NA':
continue
elif anno_score[best_gene][1] == 'NA':
best_gene = gene
elif anno_score[gene][1] < anno_score[best_gene][1]:
best_gene = gene
best_transcript, score, best_gene_exon_idx_anno,sj_flag,sjs, gene_ss_start, gene_ss_end, exon_type_dict, gene_exon_start_in, gene_exon_end_in, anno_info,gene_left_right_edge_flag,miss_exon_num = anno_score[best_gene]
gene_exon_in = [gene_exon_start_in[i] + gene_exon_end_in[i] for i in gene_exon_start_in]
if not sum(gene_exon_in):
best_gene = '{}:{}-{}'.format(CHROMS[0], min(REF_START), max(REF_END))
return best_gene, ['NA',0,['?'],[1],['NA','NA','NA','NA','NA','NA','NA','NA']]
for IDX in best_gene_exon_idx_anno:
self.EXONS_TYPE[IDX] = exon_type_dict[IDX]
correct_REF_START,correct_REF_END = [anno_db[best_gene][4][best_gene_exon_idx_anno[IDX][0]][0],anno_db[best_gene][4][best_gene_exon_idx_anno[IDX][0]][1]] if isinstance(best_gene_exon_idx_anno[IDX][0],int) else [-1,-1]
self.correct_REF_START[IDX],self.correct_REF_END[IDX] = correct_REF_START,correct_REF_END
self.GTAG_START = -1 # TODO
self.GTAG_END = -1 # TODO
self.parts_anno[part][IDX] = {'exon_type': exon_type_dict[IDX],
'correct_REF_START': correct_REF_START,
'correct_REF_END': correct_REF_END,
'ss_start': gene_ss_start[IDX],
'ss_end': gene_ss_end[IDX],
'exon_miss_5': 'NA',
'exon_miss_3': 'NA',
'GTAG_START': 'NA',
'GTAG_END': 'NA',
}
return best_gene,[best_transcript,sj_flag,sjs,gene_exon_in,anno_info]
#@_debug_run
def annotation(self,db,flag,debug=0):
if debug:
#transcript_boxplot.iso_anno(bed_test,db)
pass
self.init_parts_anno(flag)
MAX_RANGE = 1000000 # 单部分最大跨度
_5_flank, _3_flank = 'NA', 'NA'
best_gene, best_transcript, reflength, refexon_num = 'NA','NA','NA','NA'
best_anno_info = ['NA','NA','NA','NA','NA','NA','NA','NA']
self.correct_REF_START = self.REF_START.copy()
self.correct_REF_END = self.REF_END.copy()
def _0_in_ss_flag_in(ss_flag_in,idxs):
res = []
idx = []
for _idx, i in enumerate(ss_flag_in):
if i == 0:
res.append(_idx)
idx.append(idxs[_idx])
return res,idx
if flag <= 0 or flag == 10: # 正常转录本
anno_res = []
if (flag >= 0 and len(self.parts_idx) > 1) or not self.parts_idx:
self.classification = 'UNKNOWN'
self.subtype = ' UNKNOWN'
return 0
for part in self.parts_idx:
idxs = self.parts_idx[part]
REF_START = self._get_parts_by_idx(self.REF_START, idxs)
REF_END = self._get_parts_by_idx(self.REF_END, idxs)
CHROMS = self._get_parts_by_idx(self.CHROMS, idxs)
STRANDS = self._get_parts_by_idx(self.STRANDS, idxs)
BIAS_START_REGION = self._get_parts_by_idx(self.BIAS_START_REGION, idxs)
BIAS_END_REGION = self._get_parts_by_idx(self.BIAS_END_REGION, idxs)
if max(REF_END) - min(REF_START) > MAX_RANGE:
print(self.id, '注释区域长度超标!')
self.classification = 'UNKNOWN'
self.subtype = ' UNKNOWN'
return 0
anno_db = self.db_search_by_region(db, CHROMS[0], min(REF_START), max(REF_END))
self.anno_used_add(anno_db, CHROMS[0])
## 可在此加上判断注释基因数量模块
## 对注释中的每个基因进行判定
best_gene, best_anno = self.anno_func_v1(REF_START, REF_END, CHROMS, STRANDS, BIAS_START_REGION,BIAS_END_REGION, anno_db, part, idxs, mono=flag)
best_transcript, sj_flag,sjs, gene_exon_in, anno_info = best_anno
anno_res.append([best_gene, best_transcript, sj_flag,sjs, gene_exon_in, anno_info,part,CHROMS[0],STRANDS[0]])
if gene_exon_in == [1]:
juncIDX = idxs
else:
juncIDX = [idxs[i] for i in range(len(idxs)) if gene_exon_in[i]]
for _i in range(len(juncIDX)):
if not _i:
continue
if juncIDX[_i] - juncIDX[_i - 1] == 1:
if not sjs:
self.SJknown[juncIDX[_i - 1]] = 1
elif '?' in sjs:
self.SJknown[juncIDX[_i - 1]] = 0
else:
self.SJknown[juncIDX[_i - 1]] = sjs[_i - 1]
flag_in_idx,flag_idx = _0_in_ss_flag_in(gene_exon_in,idxs) # 数位表示外显子,1为在范围内,0为不在
cc = 0
pop_list = [best_gene]
if not flag_in_idx: # 没啥融合的转录本
pass
while flag_in_idx:
REF_START = self._get_parts_by_idx(REF_START, flag_in_idx)
REF_END = self._get_parts_by_idx(REF_END, flag_in_idx)
CHROMS = self._get_parts_by_idx(CHROMS, flag_in_idx)
STRANDS = self._get_parts_by_idx(STRANDS, flag_in_idx)
BIAS_START_REGION = self._get_parts_by_idx(BIAS_START_REGION, flag_in_idx)
BIAS_END_REGION = self._get_parts_by_idx(BIAS_END_REGION, flag_in_idx)
anno_db_new = self.db_search_by_region(db, CHROMS[0], min(REF_START), max(REF_END))
for i in pop_list:
if i in anno_db_new:
anno_db_new.pop(i)
self.anno_used_add(anno_db_new, CHROMS[0])
best_gene, best_anno = self.anno_func_v1(REF_START, REF_END, CHROMS, STRANDS, BIAS_START_REGION,BIAS_END_REGION, anno_db_new, part, flag_idx, mono=flag)
pop_list.append(best_gene)
best_transcript, sj_flag,sjs, gene_exon_in, anno_info = best_anno
anno_res.append([best_gene, best_transcript, sj_flag,sjs, gene_exon_in, anno_info,part,CHROMS[0],STRANDS[0]])
if len(flag_in_idx) != len(gene_exon_in):
# 这段代码是因为novel intergenic transcript返回的gene_exon_in 为[1]与flag_in_idx不等长,为了省事这么写了
juncIDX = flag_in_idx
else:
juncIDX = [flag_in_idx[i] for i in range(len(flag_in_idx)) if gene_exon_in[i]]
for _i in range(len(juncIDX)):
if not _i:
continue
if juncIDX[_i] - juncIDX[_i - 1] == 1:
if not sjs:
self.SJknown[juncIDX[_i - 1]] = 1
elif '?' in sjs:
self.SJknown[juncIDX[_i - 1]] = 0
else:
self.SJknown[juncIDX[_i - 1]] = sjs[_i - 1]
flag_in_idx,flag_idx = _0_in_ss_flag_in(gene_exon_in,idxs)
cc += 1
if cc > 5:
print(self.id, '循环超限!')
break
for IDX in self.parts_anno[part]:
self.exon_anno[IDX] = self.subtypes[self.parts_anno[part][IDX]['exon_type']]
SM_NC_EXON_NUM = 1
SM_NC_MINUES_LENGTH = -300
SM_NC_ADD_LENGTH = 100
chroms_all = [str(i[7]) for i in anno_res]
strand_all = [str(i[8]) for i in anno_res]
best_gene_all = [str(i[0]) for i in anno_res]
best_chrom = '|'.join(chroms_all)
best_strand = '|'.join(strand_all)
best_gene = '|'.join(best_gene_all)
self.anno_chrom = best_chrom
self.anno_strand = best_strand
if flag < 0:
classification = 'FUSION'
subtype = 'INNER_CHROM_FUSION' if len(set(chroms_all)) == 1 else 'INTER_CHROM_FUSION'
elif flag == 10:
subtype = 'mono_exon'
classification = 'Intergenic'
for i in anno_res:
if ':' not in i[0]:
classification = 'Genic'
if len(anno_res) == 1 and best_transcript not in ['NA','',0]:
ref_exon_num, reflength, diff_to_transcript_start, diff_to_transcript_end, exon_miss_5, exon_miss_3, diff_to_gene_start, diff_to_gene_end = anno_res[0][5]
best_anno_info = [ref_exon_num, reflength, diff_to_transcript_start, diff_to_transcript_end,exon_miss_5, exon_miss_3, diff_to_gene_start, diff_to_gene_end]
ISM_5_EXON = 1 if exon_miss_5 != 'NA' and exon_miss_5 >= SM_NC_EXON_NUM else 0
ISM_3_EXON = 1 if exon_miss_3 != 'NA' and exon_miss_3 >= SM_NC_EXON_NUM else 0
classification = 'ISM'
if ISM_5_EXON and ISM_3_EXON:
subtype = 'INTERNAL_ISM_EXON'
elif ISM_3_EXON:
subtype = '3_ISM_EXON'
elif ISM_5_EXON:
subtype = '5_ISM_EXON'
elif diff_to_transcript_start > SM_NC_ADD_LENGTH and diff_to_transcript_end > SM_NC_ADD_LENGTH:
subtype = '53_FLANK'
elif diff_to_transcript_start > SM_NC_ADD_LENGTH:
subtype = '5_FLANK'
elif diff_to_transcript_end > SM_NC_ADD_LENGTH:
subtype = '3_FLANK'
elif diff_to_transcript_start <= SM_NC_MINUES_LENGTH and diff_to_transcript_end <= SM_NC_MINUES_LENGTH:
subtype = 'INTERNAL_ISM'
elif diff_to_transcript_start <= SM_NC_MINUES_LENGTH:
subtype = '5_ISM'
elif diff_to_transcript_end <= SM_NC_MINUES_LENGTH:
subtype = '3_ISM'
else:
classification = 'FSM'
subtype = 'FSM'
elif len(anno_res) > 1:
## 注释结果数大于1时应判断其余是否为intergenic
for i in anno_res[1:]:
#print(i)
if ':' not in i[0]:
classification = 'FUSION'
subtype = 'NEIGHBOUR_FUSION'
best_gene = '|'.join([i[0] for i in anno_res])
break
else:
best_gene = anno_res[0][0]
classification = 'NNC'
subtype = 'EXTEND_EXON_REGION_NNC'
else:
best_res = anno_res[0]
ref_exon_num, reflength, diff_to_transcript_start, diff_to_transcript_end, exon_miss_5, exon_miss_3, diff_to_gene_start, diff_to_gene_end = best_res[5]
best_anno_info[6],best_anno_info[7] = diff_to_gene_start, diff_to_gene_end
flags = list(set([self.parts_anno[0][i]['exon_type'] for i in self.parts_anno[0] if self.parts_anno[0][i]['exon_type'] > 13]))
if flags:
classification = 'NNC' if max(flags) > 29 else 'NIC'
subtype = '|'.join([self.subtypes[i] for i in flags])
if classification == 'NIC':
if anno_res[0][2]:
subtype += '|combination_of_known_junction'
else:
subtype += '|combination_of_known_splicesite'
elif isinstance(diff_to_transcript_start,int):
best_anno_info = [ref_exon_num, reflength, diff_to_transcript_start, diff_to_transcript_end,exon_miss_5, exon_miss_3, diff_to_gene_start, diff_to_gene_end]
ISM_5_EXON = 1 if exon_miss_5 != 'NA' and exon_miss_5 >= SM_NC_EXON_NUM else 0
ISM_3_EXON = 1 if exon_miss_3 != 'NA' and exon_miss_3 >= SM_NC_EXON_NUM else 0
classification = 'ISM'
if ISM_5_EXON and ISM_3_EXON:
subtype = 'INTERNAL_ISM_EXON'
elif ISM_3_EXON:
subtype = '3_ISM_EXON'
elif ISM_5_EXON:
subtype = '5_ISM_EXON'
elif diff_to_transcript_start > SM_NC_ADD_LENGTH and diff_to_transcript_end > SM_NC_ADD_LENGTH:
subtype = '53_FLANK'
elif diff_to_transcript_start > SM_NC_ADD_LENGTH:
subtype = '5_FLANK'
elif diff_to_transcript_end > SM_NC_ADD_LENGTH:
subtype = '3_FLANK'
elif diff_to_transcript_start <= SM_NC_MINUES_LENGTH and diff_to_transcript_end <= SM_NC_MINUES_LENGTH:
subtype = 'INTERNAL_ISM'
elif diff_to_transcript_start <= SM_NC_MINUES_LENGTH:
subtype = '5_ISM'
elif diff_to_transcript_end <= SM_NC_MINUES_LENGTH:
subtype = '3_ISM'
else:
classification = 'FSM'
subtype = 'FSM'
elif not flag:
classification = 'NIC'
if anno_res[0][2]:
subtype = 'combination_of_known_junction'
else:
subtype = 'combination_of_known_splicesite'
else:
classification = 'BUG'
subtype = 'BUG'
else: ## flag > 0 不正常转录本
self.classification = 'UNKNOWN'
self.subtype = 'UNKNOWN'
return 0
if debug:
print(self.id)
print(classification,subtype)
print(best_gene,best_transcript,self.CHROMS[0],self.STRANDS[0])
print(self.EXONS_TYPE)
print(self.exon_anno)
self.classification = classification
self.subtype = subtype
self.best_gene = best_gene
self.best_transcript = best_transcript
self.best_anno_info = best_anno_info
txt = self.sjCanonicalCalc()
self.SJtxt += txt
self.multiAnnot(mode=2)
return 1
def db_search_by_region(self,db,chrom,start,end):
res = {}
if chrom not in db:
return res
for gene in db[chrom]:
ref_start,ref_end = db[chrom][gene][2]