|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": { |
| 6 | + "toc": true |
| 7 | + }, |
| 8 | + "source": [ |
| 9 | + "<h1>Table of Contents<span class=\"tocSkip\"></span></h1>\n", |
| 10 | + "<div class=\"toc\" style=\"margin-top: 1em;\"><ul class=\"toc-item\"></ul></div>" |
| 11 | + ] |
| 12 | + }, |
| 13 | + { |
| 14 | + "cell_type": "markdown", |
| 15 | + "metadata": {}, |
| 16 | + "source": [ |
| 17 | + "From a set of tweets, create a dataframe in which the index are the user ids and the columns are a count of tweets by day.\n", |
| 18 | + "\n", |
| 19 | + "Before using, make sure to set the correct path of the input (line-oriented JSON) files and output file (CSV)." |
| 20 | + ] |
| 21 | + }, |
| 22 | + { |
| 23 | + "cell_type": "code", |
| 24 | + "execution_count": 1, |
| 25 | + "metadata": {}, |
| 26 | + "outputs": [], |
| 27 | + "source": [ |
| 28 | + "import pandas as pd\n", |
| 29 | + "import numpy as np\n", |
| 30 | + "import json\n", |
| 31 | + "from dateutil.parser import parse as date_parse\n", |
| 32 | + "\n", |
| 33 | + "df = pd.DataFrame()\n", |
| 34 | + "\n", |
| 35 | + "# Optional limit of number of tweets to load.\n", |
| 36 | + "limit = 10000\n", |
| 37 | + "\n", |
| 38 | + "count = 0\n", |
| 39 | + "\n", |
| 40 | + "# Change json files to load\n", |
| 41 | + "for filepath in ('/Users/justinlittman/Downloads/tweets-001.jsonl',):\n", |
| 42 | + " with open(filepath) as file:\n", |
| 43 | + " for line in file:\n", |
| 44 | + " if limit and limit <= count:\n", |
| 45 | + " break\n", |
| 46 | + " tweet = json.loads(line.rstrip('\\n'))\n", |
| 47 | + " user_id = tweet['user']['id_str']\n", |
| 48 | + " created_at_day = date_parse(tweet['created_at']).strftime(\"%Y-%m-%d\")\n", |
| 49 | + " try:\n", |
| 50 | + " # Get row\n", |
| 51 | + " row = df.loc[user_id]\n", |
| 52 | + " # Set column\n", |
| 53 | + " row[created_at_day] = row[created_at_day] + 1 if pd.notna(row[created_at_day]) else 1\n", |
| 54 | + " except KeyError:\n", |
| 55 | + " # Add row\n", |
| 56 | + " df = df.append(pd.DataFrame([{created_at_day: 1}], index=[user_id]))\n", |
| 57 | + " count += 1\n", |
| 58 | + " \n", |
| 59 | + "df = df.fillna(0)\n" |
| 60 | + ] |
| 61 | + }, |
| 62 | + { |
| 63 | + "cell_type": "code", |
| 64 | + "execution_count": 2, |
| 65 | + "metadata": {}, |
| 66 | + "outputs": [ |
| 67 | + { |
| 68 | + "data": { |
| 69 | + "text/html": [ |
| 70 | + "<div>\n", |
| 71 | + "<style scoped>\n", |
| 72 | + " .dataframe tbody tr th:only-of-type {\n", |
| 73 | + " vertical-align: middle;\n", |
| 74 | + " }\n", |
| 75 | + "\n", |
| 76 | + " .dataframe tbody tr th {\n", |
| 77 | + " vertical-align: top;\n", |
| 78 | + " }\n", |
| 79 | + "\n", |
| 80 | + " .dataframe thead th {\n", |
| 81 | + " text-align: right;\n", |
| 82 | + " }\n", |
| 83 | + "</style>\n", |
| 84 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 85 | + " <thead>\n", |
| 86 | + " <tr style=\"text-align: right;\">\n", |
| 87 | + " <th></th>\n", |
| 88 | + " <th>2017-08-26</th>\n", |
| 89 | + " </tr>\n", |
| 90 | + " </thead>\n", |
| 91 | + " <tbody>\n", |
| 92 | + " <tr>\n", |
| 93 | + " <th>count</th>\n", |
| 94 | + " <td>8812.000000</td>\n", |
| 95 | + " </tr>\n", |
| 96 | + " <tr>\n", |
| 97 | + " <th>mean</th>\n", |
| 98 | + " <td>1.134816</td>\n", |
| 99 | + " </tr>\n", |
| 100 | + " <tr>\n", |
| 101 | + " <th>std</th>\n", |
| 102 | + " <td>0.604887</td>\n", |
| 103 | + " </tr>\n", |
| 104 | + " <tr>\n", |
| 105 | + " <th>min</th>\n", |
| 106 | + " <td>1.000000</td>\n", |
| 107 | + " </tr>\n", |
| 108 | + " <tr>\n", |
| 109 | + " <th>25%</th>\n", |
| 110 | + " <td>1.000000</td>\n", |
| 111 | + " </tr>\n", |
| 112 | + " <tr>\n", |
| 113 | + " <th>50%</th>\n", |
| 114 | + " <td>1.000000</td>\n", |
| 115 | + " </tr>\n", |
| 116 | + " <tr>\n", |
| 117 | + " <th>75%</th>\n", |
| 118 | + " <td>1.000000</td>\n", |
| 119 | + " </tr>\n", |
| 120 | + " <tr>\n", |
| 121 | + " <th>max</th>\n", |
| 122 | + " <td>19.000000</td>\n", |
| 123 | + " </tr>\n", |
| 124 | + " </tbody>\n", |
| 125 | + "</table>\n", |
| 126 | + "</div>" |
| 127 | + ], |
| 128 | + "text/plain": [ |
| 129 | + " 2017-08-26\n", |
| 130 | + "count 8812.000000\n", |
| 131 | + "mean 1.134816\n", |
| 132 | + "std 0.604887\n", |
| 133 | + "min 1.000000\n", |
| 134 | + "25% 1.000000\n", |
| 135 | + "50% 1.000000\n", |
| 136 | + "75% 1.000000\n", |
| 137 | + "max 19.000000" |
| 138 | + ] |
| 139 | + }, |
| 140 | + "execution_count": 2, |
| 141 | + "metadata": {}, |
| 142 | + "output_type": "execute_result" |
| 143 | + } |
| 144 | + ], |
| 145 | + "source": [ |
| 146 | + "df.describe()" |
| 147 | + ] |
| 148 | + }, |
| 149 | + { |
| 150 | + "cell_type": "code", |
| 151 | + "execution_count": 3, |
| 152 | + "metadata": {}, |
| 153 | + "outputs": [ |
| 154 | + { |
| 155 | + "data": { |
| 156 | + "text/html": [ |
| 157 | + "<div>\n", |
| 158 | + "<style scoped>\n", |
| 159 | + " .dataframe tbody tr th:only-of-type {\n", |
| 160 | + " vertical-align: middle;\n", |
| 161 | + " }\n", |
| 162 | + "\n", |
| 163 | + " .dataframe tbody tr th {\n", |
| 164 | + " vertical-align: top;\n", |
| 165 | + " }\n", |
| 166 | + "\n", |
| 167 | + " .dataframe thead th {\n", |
| 168 | + " text-align: right;\n", |
| 169 | + " }\n", |
| 170 | + "</style>\n", |
| 171 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 172 | + " <thead>\n", |
| 173 | + " <tr style=\"text-align: right;\">\n", |
| 174 | + " <th></th>\n", |
| 175 | + " <th>2017-08-26</th>\n", |
| 176 | + " </tr>\n", |
| 177 | + " </thead>\n", |
| 178 | + " <tbody>\n", |
| 179 | + " <tr>\n", |
| 180 | + " <th>2804679657</th>\n", |
| 181 | + " <td>1</td>\n", |
| 182 | + " </tr>\n", |
| 183 | + " <tr>\n", |
| 184 | + " <th>35943534</th>\n", |
| 185 | + " <td>1</td>\n", |
| 186 | + " </tr>\n", |
| 187 | + " <tr>\n", |
| 188 | + " <th>458065150</th>\n", |
| 189 | + " <td>1</td>\n", |
| 190 | + " </tr>\n", |
| 191 | + " <tr>\n", |
| 192 | + " <th>30017277</th>\n", |
| 193 | + " <td>1</td>\n", |
| 194 | + " </tr>\n", |
| 195 | + " <tr>\n", |
| 196 | + " <th>827910186031599618</th>\n", |
| 197 | + " <td>1</td>\n", |
| 198 | + " </tr>\n", |
| 199 | + " </tbody>\n", |
| 200 | + "</table>\n", |
| 201 | + "</div>" |
| 202 | + ], |
| 203 | + "text/plain": [ |
| 204 | + " 2017-08-26\n", |
| 205 | + "2804679657 1\n", |
| 206 | + "35943534 1\n", |
| 207 | + "458065150 1\n", |
| 208 | + "30017277 1\n", |
| 209 | + "827910186031599618 1" |
| 210 | + ] |
| 211 | + }, |
| 212 | + "execution_count": 3, |
| 213 | + "metadata": {}, |
| 214 | + "output_type": "execute_result" |
| 215 | + } |
| 216 | + ], |
| 217 | + "source": [ |
| 218 | + "df.head()" |
| 219 | + ] |
| 220 | + }, |
| 221 | + { |
| 222 | + "cell_type": "code", |
| 223 | + "execution_count": 4, |
| 224 | + "metadata": {}, |
| 225 | + "outputs": [], |
| 226 | + "source": [ |
| 227 | + "# Change destination file.\n", |
| 228 | + "df.to_csv('/Users/justinlittman/Downloads/tweeters_by_date.csv')" |
| 229 | + ] |
| 230 | + } |
| 231 | + ], |
| 232 | + "metadata": { |
| 233 | + "kernelspec": { |
| 234 | + "display_name": "Python 3", |
| 235 | + "language": "python", |
| 236 | + "name": "python3" |
| 237 | + }, |
| 238 | + "language_info": { |
| 239 | + "codemirror_mode": { |
| 240 | + "name": "ipython", |
| 241 | + "version": 3 |
| 242 | + }, |
| 243 | + "file_extension": ".py", |
| 244 | + "mimetype": "text/x-python", |
| 245 | + "name": "python", |
| 246 | + "nbconvert_exporter": "python", |
| 247 | + "pygments_lexer": "ipython3", |
| 248 | + "version": "3.6.3" |
| 249 | + }, |
| 250 | + "toc": { |
| 251 | + "nav_menu": {}, |
| 252 | + "number_sections": true, |
| 253 | + "sideBar": true, |
| 254 | + "skip_h1_title": false, |
| 255 | + "toc_cell": true, |
| 256 | + "toc_position": {}, |
| 257 | + "toc_section_display": "block", |
| 258 | + "toc_window_display": true |
| 259 | + } |
| 260 | + }, |
| 261 | + "nbformat": 4, |
| 262 | + "nbformat_minor": 2 |
| 263 | +} |
0 commit comments