forked from lgcnsai/PS-KD-Pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
502 lines (399 loc) · 19.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
'''Train PS-KD: learning with PyTorch.'''
from __future__ import print_function
#----------------------------------------------------
# Pytorch
#----------------------------------------------------
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
#--------------
# Datalodader
#--------------
from loader import custom_dataloader
#----------------------------------------------------
# Load CNN-architecture
#----------------------------------------------------
from models.network import get_network
#--------------
# Loss
#--------------
from loss.pskd_loss import Custom_CrossEntropy_PSKD
from loss.supcon_loss import StudentLoss, TeacherLoss
#--------------
# Util
#--------------
from utils.dir_maker import DirectroyMaker
from utils.AverageMeter import AverageMeter
from utils.metric import metric_ece_aurc_eaurc
from utils.color import Colorer
from utils.etc import progress_bar, is_main_process, save_on_master, paser_config_save, set_logging_defaults
#----------------------------------------------------
# Etc
#----------------------------------------------------
import os, logging
import argparse
import numpy as np
#----------------------------------------------------
# Training Setting parser
#----------------------------------------------------
def parse_args():
parser = argparse.ArgumentParser(description='Online self-KD with soft labels')
parser.add_argument('--lr', default=0.2, type=float, help='initial learning rate for student head and backbone')
parser.add_argument('--lr_decay_rate', default=0.1, type=float, help='learning rate decay rate')
parser.add_argument('--lr_decay_schedule', default=[150, 225], nargs='*', type=int, help='when to drop lr')
parser.add_argument('--weight_decay', default=5e-4, type=float, help='weight_decay for student head and backbone')
parser.add_argument('--start_epoch', default=0, type=int, help='manual epoch number')
parser.add_argument('--end_epoch', default=300, type=int, help='number of training epoch to run')
parser.add_argument('--batch_size', type=int, default=256, help='mini-batch size (default: 128), this is the total'
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--experiments_dir', type=str, default='models',help='Directory name to save the model, log, config')
parser.add_argument('--classifier_type', type=str, default='ResNet18', help='Select classifier')
parser.add_argument('--data_path', type=str, default=None, help='download dataset path')
parser.add_argument('--data_type', type=str, default=None, help='type of dataset')
parser.add_argument('--alpha_T',default=0.8 ,type=float, help='alpha_T')
parser.add_argument('--cosine_schedule', action='store_true', help='use cosine annealing learning rate schedule')
parser.add_argument('--saveckp_freq', default=300, type=int, help='Save checkpoint every x epochs. Last model saving set to 299')
parser.add_argument('--workers', default=40, type=int, help='number of workers for dataloader')
parser.add_argument('--custom_transform', action='store_true', help='use supervised contrastive augmentation')
parser.add_argument('--use_teacher_loss', action='store_true', help='backpropagate through teacher head')
parser.add_argument('--use_student_loss', action='store_true', help='backpropagate through student head')
parser.add_argument('--temperature', default=1.0, type=float, help='temperature')
#parser.add_argument('--supervised_contrastive', action='store_true', help='add supervised contrastive loss to teacher output')
parser.add_argument('--kill_similar_gradients', action='store_true',
help='kill gradients in teacher loss if the predictions are too similar and/or too dissimilar')
parser.add_argument('--resume', type=str, default=None, help='load model path')
parser.add_argument('--use_prior', action='store_true', help='use prior knowledge of superclasses')
parser.add_argument('--sim_threshold', default=1.0, type=float, help='similarity threshold for teacher loss')
parser.add_argument('--dis_sim_threshold', default=1.0, type=float, help='dissimilarity threshold for teacher loss')
parser.add_argument('--teacher_lr', default=0.2, type=float,
help='learning rate for teacher head and learnable parameters')
parser.add_argument('--teacher_weight_decay', default=1e-6, type=float,
help='weight decay for teacher head and learnable parameters')
args = parser.parse_args()
return check_args(args)
def check_args(args):
# --epoch
try:
assert args.end_epoch >= 1
except:
print('number of epochs must be larger than or equal to one')
# --batch_size
try:
assert args.batch_size >= 1
except:
print('batch size must be larger than or equal to one')
return args
#----------------------------------------------------
# Adjust_learning_rate & get_learning_rate
#----------------------------------------------------
def adjust_learning_rate(optimizer, epoch, args):
warmup_length = 9
if args.cosine_schedule:
if epoch == 0:
mult_factor = 0.01
elif epoch <= warmup_length:
# we will exponentially increase from 0.002 to 0.2 in the warmup-period
mult_factor = np.power(100, 1/warmup_length)
else: # epoch > warmup_length
# calculate the factor from previous epoch
factor_previous = 0.5 * (1.0 + np.cos(np.pi * ((epoch - warmup_length - 1)/(args.end_epoch - warmup_length))))
factor_now = 0.5 * (1.0 + np.cos(np.pi * ((epoch - warmup_length)/(args.end_epoch - warmup_length))))
mult_factor = factor_now/factor_previous
else:
mult_factor = 1.
for milestone in args.lr_decay_schedule:
if epoch == milestone:
mult_factor *= args.lr_decay_rate
for param_group in optimizer.param_groups:
param_group['lr'] *= mult_factor
"""
lr = args.lr
if args.cosine_schedule:
t_cur = epoch
t_end = args.end_epoch
lr = 0.5 * lr * (1.0 + np.cos(np.pi * (t_cur / t_end)))
else:
for milestone in args.lr_decay_schedule:
lr *= args.lr_decay_rate if epoch >= milestone else 1.
for param_group in optimizer.param_groups:
param_group['lr'] = lr
"""
def get_learning_rate(optimizer):
lr = []
for param_group in optimizer.param_groups:
lr += [param_group['lr']]
return lr
#----------------------------------------------------
# Top-1 / Top -5 accuracy
#----------------------------------------------------
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.reshape(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
#----------------------------------------------------
# Colour print
#----------------------------------------------------
C = Colorer.instance()
def main(args=None):
if args is None:
args = parse_args()
#----------------------------------------------------
# Prompt color print
#----------------------------------------------------
print(C.green("[!] Start the Online Self-KD with soft labels."))
print(C.green("[!] Code borrowed from PSKD paper"))
#-------------------------------------------------------------
# Create dir for saving experiments model, log, configuration
#-------------------------------------------------------------
dir_maker = DirectroyMaker(root=args.experiments_dir, save_model=True, save_log=True, save_config=True)
model_log_config_dir = dir_maker.experiments_dir_maker(args)
model_dir = model_log_config_dir[0]
log_dir = model_log_config_dir[1]
config_dir = model_log_config_dir[2]
#----------------------------------------------------
# Save Configuration to config_dir
#----------------------------------------------------
paser_config_save(args, config_dir)
highest_acc = main_worker(0, None, model_dir, log_dir, args)
print(C.green("[!] All Single GPU Training Done"))
print(C.underline(C.red2('[Info] Save Model dir:')), C.red2(model_dir))
print(C.underline(C.red2('[Info] Log dir:')), C.red2(log_dir))
print(C.underline(C.red2('[Info] Config dir:')), C.red2(config_dir))
return highest_acc
def main_worker(gpu, ngpus_per_node, model_dir, log_dir, args):
best_acc = 0
net = get_network(args)
args.gpu = gpu
#torch.cuda.set_device(args.gpu)
net = net.cuda(args.gpu)
set_logging_defaults(log_dir, args)
#---------------------------------------------------
# Load Dataset
#---------------------------------------------------
train_loader, valid_loader, train_sampler = custom_dataloader.dataloader(args)
#---------------------------------------------------
# Define loss function (criterion) and optimizer
#----------------------------------------------------
#if args.supervised_contrastive:
criterion_CE = nn.CrossEntropyLoss().cuda(args.gpu)
criterion_student = StudentLoss(temperature=args.temperature).cuda(args.gpu)
criterion_teacher = TeacherLoss(temperature=args.temperature, sim_threshold=args.sim_threshold,
dis_sim_threshold=args.dis_sim_threshold,
kill_gradients=args.kill_similar_gradients).cuda(args.gpu)
#else:
# criterion_student = None
# criterion_teacher = None
# use vicreg hyperparameters for the teacher head
optimizer = torch.optim.SGD([
{'params': net.conv1.parameters()},
{'params': net.bn1.parameters()}, # not sure if this needs to be included to let gradients flow through
{'params': net.layer1.parameters()},
{'params': net.layer2.parameters()},
{'params': net.layer3.parameters()},
{'params': net.layer4.parameters()},
{'params': net.student_head.parameters()},
{'params': net.teacher_head.parameters(), "lr": args.teacher_lr, 'weight_decay': args.teacher_weight_decay},
{'params': net.learnable_params.parameters(), "lr": args.teacher_lr, 'weight_decay': 0.0}
# exclude learnable parameters from weight decay
],
lr=args.lr, momentum=0.9, weight_decay=args.weight_decay, nesterov=True)
#optimizer = torch.optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=args.weight_decay,
# nesterov=True)
#----------------------------------------------------
# load status & Resume Learning
#----------------------------------------------------
if args.resume:
if args.gpu is None:
checkpoint = torch.load(args.resume)
else:
loc = 'cuda:{}'.format(args.gpu)
checkpoint = torch.load(args.resume, map_location=loc)
args.start_epoch = checkpoint['epoch'] + 1
alpha_t = checkpoint['alpha_t']
best_acc = checkpoint['best_acc']
#all_predictions = checkpoint['prev_predictions'].cpu()
net.load_state_dict(checkpoint['net'])
optimizer.load_state_dict(checkpoint['optimizer'])
#print(C.green("[!] [Rank {}] Model loaded".format(args.rank)))
del checkpoint
#----------------------------------------------------
# PS-KD train & validation
#----------------------------------------------------
cudnn.benchmark = True
for epoch in range(args.start_epoch, args.end_epoch):
adjust_learning_rate(optimizer, epoch, args)
alpha_t = args.alpha_T * ((epoch + 1) / args.end_epoch)
alpha_t = max(0, alpha_t)
train(None, None, None, criterion_student,
criterion_teacher,optimizer, net, epoch, alpha_t, train_loader, args)
#---------------------------------------------------
# Validation
#---------------------------------------------------
acc = val(criterion_CE, net, epoch, valid_loader, args)
#---------------------------------------------------
# Save_dict for saving model
#---------------------------------------------------
save_dict = {
'net': net.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch,
'best_acc' : best_acc,
'accuracy' : acc,
'alpha_t' : alpha_t
}
if acc > best_acc:
best_acc = acc
#save_on_master(save_dict,os.path.join(model_dir, 'checkpoint_best.pth'))
#if args.saveckp_freq and (epoch+1) % args.saveckp_freq == 0:
if epoch==1 or epoch==10 or epoch==50 or (epoch+1)%args.saveckp_freq == 0:
save_on_master(save_dict,os.path.join(model_dir, f'checkpoint_{epoch:03}.pth'))
return best_acc
#-------------------------------
# Train
#-------------------------------
def train(all_predictions,
criterion_CE,
criterion_CE_pskd,
criterion_student,
criterion_teacher,
optimizer,
net,
epoch,
alpha_t,
train_loader,
args):
train_top1 = AverageMeter()
train_top5 = AverageMeter()
train_losses = AverageMeter()
correct = 0
total = 0
net.train()
current_LR = get_learning_rate(optimizer)[0]
for batch_idx, (inputs, targets, input_indices) in enumerate(train_loader):
inputs = inputs.cuda(args.gpu, non_blocking=True)
targets = targets.cuda(args.gpu, non_blocking=True)
#-----------------------------------
# Self-KD or none
#-----------------------------------
targets_numpy = targets.cpu().detach().numpy()
identity_matrix = torch.eye(len(train_loader.dataset.classes))
targets_one_hot = identity_matrix[targets_numpy]
# student model
# compute output
embedding = net(inputs)
detached_embedding = embedding.clone().detach()
if args.use_student_loss:
student_logits = net.student_head(embedding)
else:
student_logits = net.student_head(detached_embedding)
if args.use_teacher_loss:
teacher_logits = net.learnable_params(F.normalize(net.teacher_head(embedding)))
else:
teacher_logits = net.learnable_params(F.normalize(net.teacher_head(detached_embedding)))
loss_student = criterion_student(student_logits, targets_one_hot.cuda(),
teacher_logits.clone().detach(), alpha_t)
loss_teacher = criterion_teacher(teacher_logits, targets)
loss = loss_student + loss_teacher
if args.use_prior:
prior_loss = net.prior_loss(args.data_type)
loss += prior_loss
train_losses.update(loss.item(), inputs.size(0))
err1, err5 = accuracy(student_logits.data, targets, topk=(1, 5))
train_top1.update(err1.item(), inputs.size(0))
train_top5.update(err5.item(), inputs.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# after optimizer step, normalize the learnable parameters again
with torch.no_grad():
net.learnable_params.weight.div_(torch.norm(net.learnable_params.weight, dim=1, keepdim=True))
_, predicted = torch.max(student_logits, 1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(epoch,batch_idx, len(train_loader), args, 'lr: {:.1e} | alpha_t: {:.3f} | loss: {:.3f} | top1_acc: {:.3f} | top5_acc: {:.3f} | correct/total({}/{})'.format(
current_LR, alpha_t, train_losses.avg, train_top1.avg, train_top5.avg, correct, total))
logger = logging.getLogger('train')
logger.info('[Epoch {}] [lr {:.1e}] [alpht_t {:.3f}] [train_loss {:.3f}] [train_top1_acc {:.3f}] [train_top5_acc {:.3f}] [correct/total {}/{}]'.format(
epoch,
current_LR,
alpha_t,
train_losses.avg,
train_top1.avg,
train_top5.avg,
correct,
total))
#-------------------------------
# Validation
#-------------------------------
def val(criterion_CE,
net,
epoch,
val_loader,
args):
val_top1 = AverageMeter()
val_top5 = AverageMeter()
val_losses = AverageMeter()
targets_list = []
confidences = []
net.eval()
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets, _) in enumerate(val_loader):
inputs = inputs.cuda(args.gpu, non_blocking=True)
targets = targets.cuda(args.gpu, non_blocking=True)
#for ECE, AURC, EAURC
targets_numpy = targets.cpu().numpy()
targets_list.extend(targets_numpy.tolist())
# model output
student_logits = net.student_head(net(inputs))
# for ECE, AURC, EAURC
student_prob = F.softmax(student_logits, dim=1)
student_prob = student_prob.cpu().numpy()
for values_ in student_prob:
confidences.append(values_.tolist())
_, predicted = torch.max(student_logits, 1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
loss = criterion_CE(student_logits, targets)
val_losses.update(loss.item(), inputs.size(0))
#Top1, Top5 Err
err1, err5 = accuracy(student_logits.data, targets, topk=(1, 5))
val_top1.update(err1.item(), inputs.size(0))
val_top5.update(err5.item(), inputs.size(0))
progress_bar(epoch, batch_idx, len(val_loader), args,'val_loss: {:.3f} | val_top1_acc: {:.3f} | val_top5_acc: {:.3f} | correct/total({}/{})'.format(
val_losses.avg,
val_top1.avg,
val_top5.avg,
correct,
total))
#if is_main_process():
ece,aurc,eaurc = metric_ece_aurc_eaurc(confidences,
targets_list,
bin_size=0.1)
logger = logging.getLogger('val')
logger.info('[Epoch {}] [val_loss {:.3f}] [val_top1_acc {:.3f}] [val_top5_acc {:.3f}] [ECE {:.3f}] [AURC {:.3f}] [EAURC {:.3f}] [correct/total {}/{}]'.format(
epoch,
val_losses.avg,
val_top1.avg,
val_top5.avg,
ece,
aurc,
eaurc,
correct,
total))
return val_top1.avg
if __name__ == '__main__':
main()