-
Notifications
You must be signed in to change notification settings - Fork 0
/
Lesson4-Decision Tree.py
48 lines (30 loc) · 1.13 KB
/
Lesson4-Decision Tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#!/usr/bin/python
"""
This is the code to accompany the Lesson 3 (decision tree) mini-project.
Use a Decision Tree to identify emails from the Enron corpus by author:
Sara has label 0
Chris has label 1
"""
import sys
from time import time
sys.path.append("../tools/")
from email_preprocess import preprocess
### features_train and features_test are the features for the training
### and testing datasets, respectively
### labels_train and labels_test are the corresponding item labels
features_train, features_test, labels_train, labels_test = preprocess()
#########################################################
### your code goes here ###
from sklearn import tree
from sklearn.metrics import accuracy_score
clf = tree.DecisionTreeClassifier(min_samples_split=40)
print(len(features_train))
t0 = time()
clf.fit(features_train, labels_train)
print("Training Time:", round(time()-t0, 3), "s")
t1 = time()
pred = clf.predict(features_test)
print("Predicting Time:", round(time()-t1, 3), "s")
acc = accuracy_score(labels_test,pred)
print("Accuracy:", acc)
#########################################################