-
Notifications
You must be signed in to change notification settings - Fork 0
/
Lesson10-FeatureScaling.py
94 lines (69 loc) · 2.84 KB
/
Lesson10-FeatureScaling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#!/usr/bin/python3
"""
Skeleton code for k-means clustering mini-project.
"""
import joblib
import numpy
import matplotlib.pyplot as plt
import sys
sys.path.append("../tools/")
from feature_format import featureFormat, targetFeatureSplit
def Draw(pred, features, poi, mark_poi=False, name="image.png", f1_name="feature 1", f2_name="feature 2"):
""" some plotting code designed to help you visualize your clusters """
### plot each cluster with a different color--add more colors for
### drawing more than five clusters
colors = ["b", "c", "k", "m", "g"]
for ii, pp in enumerate(pred):
plt.scatter(features[ii][0], features[ii][1], color = colors[pred[ii]])
### if you like, place red stars over points that are POIs (just for funsies)
if mark_poi:
for ii, pp in enumerate(pred):
if poi[ii]:
plt.scatter(features[ii][0], features[ii][1], color="r", marker="*")
plt.xlabel(f1_name)
plt.ylabel(f2_name)
plt.savefig(name)
plt.show()
### load in the dict of dicts containing all the data on each person in the dataset
data_dict = joblib.load( open("../final_project/final_project_dataset.pkl", "rb") )
### there's an outlier--remove it!
data_dict.pop("TOTAL", 0)
### the input features we want to use
### can be any key in the person-level dictionary (salary, director_fees, etc.)
feature_1 = "salary"
feature_2 = "exercised_stock_options"
#feature_3 = "total_payments"
poi = "poi"
features_list = [poi, feature_1, feature_2]
#features_list = [poi, feature_1, feature_2,feature_3]
data = featureFormat(data_dict, features_list )
poi, finance_features = targetFeatureSplit( data )
import numpy as np
_,salary,stock = zip(*data)
salary = np.array(salary).reshape(len(salary),1)
stock = np.array(stock).reshape(len(stock),1)
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
salary = scaler.fit_transform(salary)
print(scaler.transform([[200000.]])[0][0])
stock = scaler.fit_transform(stock)
print(scaler.transform([[1000000.]])[0][0])
### in the "clustering with 3 features" part of the mini-project,
### you'll want to change this line to
### for f1, f2, _ in finance_features:
### (as it's currently written, the line below assumes 2 features)
for f1, f2 in finance_features:
plt.scatter( f1, f2 )
plt.show()
### cluster here; create predictions of the cluster labels
### for the data and store them to a list called pred
from sklearn.cluster import KMeans
clf=KMeans(2)
clf.fit(finance_features)
pred =clf.predict(finance_features)
### rename the "name" parameter when you change the number of features
### so that the figure gets saved to a different file
try:
Draw(pred, finance_features, poi, mark_poi=False, name="clusters.pdf", f1_name=feature_1, f2_name=feature_2)
except NameError:
print("No predictions object named pred found, no clusters to plot")