-
Notifications
You must be signed in to change notification settings - Fork 51
/
clsgan.lua
517 lines (404 loc) · 17.9 KB
/
clsgan.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
--[[
clsgan.lua: Conditional Loss-Sensitive GAN
Author: Guo-Jun Qi, Date:1/9/2017
This implements the CLSGAN that takes an input of class label and outputs images corresponding to given labels.
We use three datasets available to train the model, and the users can provide their own by modifying the dataset loading procedure.
--]]
--require('mobdebug').start() -- for debug purpose
require 'torch'
require 'nn'
require 'optim'
require 'image'
opt = {
dataset = 'svhn', -- svhn / cifar10 / mnist: now we support these three datasets. Users should modify the loading of dataset and get_minibatch function to use their own datasets.
batchSize = 64,--64,
nex = 10, -- # of examples to produce for each class
loadSize = 96,
fineSize = 32,
nz = 100, -- # of dim for Z
ngf = 64, -- # of gen filters in first conv layer
ndf = 64, -- # of discrim filters in first conv layer
nThreads = 4, -- # of data loading threads to use
nlabel = 10, -- # of labels to be used
nchannel = 3, -- # of input image channels
niter = 25, -- # of iter at starting learning rate
lr = 0.001,--0.000002, 0.0001 -- initial learning rate for adam
beta1 = 0.5,--0.5, -- momentum term of adam
ntrain = math.huge, -- # of examples per epoch. math.huge for full dataset
display = 1, -- display samples while training. 0 = false
display_id = 25, -- display window id.
gpu = 1, -- gpu = -1 is CPU mode. gpu=X is GPU mode on GPU X
name = 'svhn_32x32',
noise = 'normal', -- uniform / normal
lambda=0.0008, -- L2: 0.05/L1: 0.001
gamma = 1.0, --0.00005,
gamma_decay = 0.999,
decay_rate = 0.0, -- last: 0.02
}
-- one-line argument parser. parses enviroment variables to override the defaults
for k,v in pairs(opt) do opt[k] = tonumber(os.getenv(k)) or os.getenv(k) or opt[k] end
print(opt)
if opt.display == 0 then opt.display = false end
opt.manualSeed = torch.random(1, 10000) -- fix seed
print("Random Seed: " .. opt.manualSeed)
torch.manualSeed(opt.manualSeed)
torch.setnumthreads(1)
torch.setdefaulttensortype('torch.FloatTensor')
-- create data loader
--local DataLoader = paths.dofile('data/data.lua')
--local data = DataLoader.new(opt.nThreads, opt.dataset, opt)
--print("Dataset: " .. opt.dataset, " Size: ", data:size())
----------------------------------------------------------------------------
local function weights_init(m)
local name = torch.type(m)
if name:find('Convolution') then
m.weight:normal(0.0, 0.02)
m:noBias()
elseif name:find('BatchNormalization') then
if m.weight then m.weight:normal(1.0, 0.02) end
if m.bias then m.bias:fill(0) end
end
end
local nc = opt.nchannel
local nz = opt.nz
local ndf = opt.ndf
local ngf = opt.ngf
local real_label = -1 -- the original one was 1 , we changed that for sake of MarginCriterion
local fake_label = 0
local nlabel = opt.nlabel
local SpatialBatchNormalization = nn.SpatialBatchNormalization
local SpatialConvolution = nn.SpatialConvolution
local SpatialFullConvolution = nn.SpatialFullConvolution
local netG = nn.Sequential()
-- input is Z, going into a convolution
netG:add(SpatialFullConvolution(nz+nlabel, ngf * 8, 4, 4))
netG:add(SpatialBatchNormalization(ngf * 8)):add(nn.ReLU(true))
-- state size: (ngf*8) x 4 x 4
netG:add(SpatialFullConvolution(ngf * 8, ngf * 4, 4, 4, 2, 2, 1, 1))
netG:add(SpatialBatchNormalization(ngf * 4)):add(nn.ReLU(true))
-- state size: (ngf*4) x 8 x 8
netG:add(SpatialFullConvolution(ngf * 4, ngf * 2, 4, 4, 2, 2, 1, 1))
netG:add(SpatialBatchNormalization(ngf * 2)):add(nn.ReLU(true))
-- state size: (ngf*2) x 16 x 16
------------------------ output 32x32 ---------------------------
netG:add(SpatialFullConvolution(ngf * 2, nc, 4, 4, 2, 2, 1, 1))
-- state size: (nc) x 32 x 32
------------------------------------------------------------------
--netG:add(SpatialFullConvolution(ngf * 2, ngf, 4, 4, 2, 2, 1, 1))
--netG:add(SpatialBatchNormalization(ngf)):add(nn.ReLU(true))
-- state size: (ngf) x 32 x 32
--netG:add(SpatialFullConvolution(ngf, nc, 4, 4, 2, 2, 1, 1))
netG:add(nn.Tanh())
-- state size: (nc) x 64 x 64
netG:apply(weights_init)
local netD = nn.Sequential()
-- input is (nc) x 32 x 32
netD:add(SpatialConvolution(nc, ndf, 4, 4, 2, 2, 1, 1))
netD:add(nn.LeakyReLU(0.2, true))
-- state size: (ndf) x 16 x 16 or 32 x 32
netD:add(SpatialConvolution(ndf, ndf, 3, 3, 1, 1, 1, 1))
netD:add(SpatialBatchNormalization(ndf)):add(nn.LeakyReLU(0.2, true))
-- state size: (ndf) x 16 x 16 or 32 x 32
netD:add(SpatialConvolution(ndf, ndf * 2, 4, 4, 2, 2, 1, 1))
netD:add(SpatialBatchNormalization(ndf * 2)):add(nn.LeakyReLU(0.2, true))
-- state size: (ndf*2) x 8 x 8 or 16 x 16
netD:add(SpatialConvolution(ndf*2, ndf*2, 3, 3, 1, 1, 1, 1))
netD:add(SpatialBatchNormalization(ndf * 2)):add(nn.LeakyReLU(0.2, true))
-- state size: (ndf*2) x 8 x 8 or 16 x 16
netD:add(SpatialConvolution(ndf * 2, ndf * 4, 4, 4, 2, 2, 1, 1))
netD:add(SpatialBatchNormalization(ndf * 4)):add(nn.LeakyReLU(0.2, true))
-- state size: (ndf*4) x 4 x 4 or 8 x 8
netD:add(SpatialConvolution(ndf * 4, ndf * 4, 3, 3, 1, 1, 1, 1))
netD:add(SpatialBatchNormalization(ndf * 4)):add(nn.LeakyReLU(0.2, true))
-- state size: (ndf*4) x 4 x 4 or 8 x 8
---------------- for input 64 x 64 ----------------------------
--netD:add(SpatialConvolution(ndf * 4, ndf * 8, 4, 4, 2, 2, 1, 1))
--netD:add(SpatialBatchNormalization(ndf * 8)):add(nn.LeakyReLU(0.2, true))
-- state size: (ndf*8) x 4 x 4
--netD:add(SpatialConvolution(ndf * 8, nlabel, 4, 4))
-- state size: nlabel x 1 x 1
-----------------for input 32 x 32 ------------------------------
netD:add(SpatialConvolution(ndf * 4, nlabel, 4, 4))
-- state size: nlabel x 1 x 1
-----------------------------------------------------------------
netD:add(nn.SpatialLogSoftMax())
netD:add(nn.MulConstant(-1,true)) -- because this is loss function and we will minimize it
--netD:add(nn.Sigmoid())
----------comment out-----------------------
--netD:add(nn.LogSigmoid())--original Sigmoid
--netD:add(nn.MulConstant(-1,false))
--------------------------------------------
-- state size: 1 x 1 x 1
--netD:add(nn.SoftPlus())
--netD:add(nn.ReLU(true))
netD:add(nn.View(nlabel):setNumInputDims(3))
-- state size: nlabel
netD:apply(weights_init)
--local criterion = nn.BCECriterion()
local criterion = nn.MarginCriterion(0) --set the coresponding y to -1 so it will become loss(x,y)=sum_i(max(0,0-(-1)*x[i]))/x:nElement()
--local criterion = nn.SoftMarginCriterion()
local L2dist=nn.PairwiseDistance(2)
local L1dist=nn.PairwiseDistance(1)
---------------------------------------------------------------------------
optimStateG = {
learningRate = opt.lr,
beta1 = opt.beta1,
}
optimStateD = {
learningRate = opt.lr,
beta1 = opt.beta1,
}
optimStateGsgd = {
learningRate = 0.004,
learningRateDecay=1.000004,
momentum = 0.5,--opt.beta1,
}
optimStateDsgd = {
learningRate =0.008,
learningRateDecay=1.000004,
momentum = 0.5,--opt.beta1,
}
----------------------------------------------------------------------------
local input = torch.Tensor(opt.batchSize, nc, opt.fineSize, opt.fineSize)
local input_label = torch.Tensor(opt.batchSize)
local input_label_onehot = torch.Tensor(opt.batchSize, opt.nlabel)
local noise = torch.Tensor(opt.batchSize, nz+nlabel, 1, 1)
local input_fakeimg=torch.Tensor(opt.batchSize, nc, opt.fineSize, opt.fineSize)
local df_mnllik=(1/(opt.batchSize))*torch.ones(opt.batchSize,1) -- changed by GQ
local label = torch.Tensor(opt.batchSize)
local errD, errG
local epoch_tm = torch.Timer()
local tm = torch.Timer()
local data_tm = torch.Timer()
noise_vis = torch.Tensor(opt.nex*nlabel,nz+nlabel,1,1) --noise:clone()
if opt.noise == 'uniform' then
noise_vis:uniform(-1, 1)
elseif opt.noise == 'normal' then
noise_vis:normal(0, 1)
end
for i=1,opt.nex do
for j=1,nlabel do
noise_vis[{{(i-1)*nlabel+j},{1,nlabel},{1},{1}}]:fill(0)
noise_vis[{{(i-1)*nlabel+j},{j},{1},{1}}]=1
end
end
--print(noise_vis:size())
------------ function to load datasets--------------------------------------
print('beginning to load dataset...')
dataset = opt.dataset
if dataset == 'mnist' then
mnist=require 'mnist'
local trainset=mnist.traindataset()
local testset=mnist.testdataset()
c10= {
data=image.scale(trainset.data,opt.fineSize,opt.fineSize):view(60000,1,opt.fineSize,opt.fineSize),
label=trainset.label
}
c10t= {
data=image.scale(testset.data,opt.fineSize,opt.fineSize):view(10000,1,opt.fineSize,opt.fineSize),
label=testset.label
}
size_train=trainset.size
size_test=testset.size
print('loading mnist')
elseif dataset == 'cifar10' then
c10=torch.load('cifar10-train.t7')
size_train=c10.label:size()[1]
c10t=torch.load('cifar10-test.t7')
size_test=c10t.label:size()[1]
print('loading cifar10')
elseif dataset == 'svhn' then
local loaded=torch.load('./housenumbers/train_32x32.t7','ascii')
c10= {
data=loaded.X:transpose(3,4),
label=loaded.y[1]-1
}
size_train=c10.label:size()[1]
local loaded_t=torch.load('./housenumbers/test_32x32.t7','ascii')
c10t = {
data=loaded_t.X:transpose(3,4),
label=loaded_t.y[1]-1
}
size_test=c10t.label:size()[1]
print('loading svhn')
else
print('no data is loading...')
end
------------------ we should scale the image pixel values to [-1,1] in line with tanh output by the generator --------------------
if dataset == 'svhn' or dataset=='cifar10' or dataset == 'mnist' then
c10.data=c10.data:double()
c10.data=2*(c10.data/255)-1
c10t.data=c10t.data:double()
c10t.data=2*(c10t.data/255)-1
end
----------------- end of scaling --------------------------------------------------------------------------------------------------
print('finishing loading dataset...')
local start_idx=1
local end_idx=start_idx+opt.batchSize-1
local function mnist_getBatch()
local i=1
input_label_onehot:fill(0)
for j=start_idx,end_idx do
-- print(input[{{i},{},{},{}}]:size())
if dataset == 'other' then
input[{{i},{},{},{}}][1]=2*(image.scale(trainset[j].x,opt.fineSize,opt.fineSize)/255)-1
--input[{{i},{},{},{}}]=trainset[j].x
input_label[i]=trainset[j].y+1
input_label_onehot[i][trainset[j].y+1]=1
elseif dataset == 'cifar10' or dataset == 'svhn' or dataset == 'mnist' then
--input[{{i},{},{},{}}]=image.scale(c10.data[j],opt.fineSize,opt.fineSize)
input[{{i},{},{},{}}]:copy(c10.data[j])
input_label[i]=c10.label[j]+1
input_label_onehot[i][c10.label[j]+1]=1
end
i=i+1
end
start_idx=(start_idx+opt.batchSize-1)%size_train+1
end_idx = (start_idx+opt.batchSize-2)%size_train+1
end
----------------------------------------------------------------------------
if opt.gpu > -1 then
require 'cunn'
cutorch.setDevice(opt.gpu)
input = input:cuda(); noise = noise:cuda(); label = label:cuda(); input_fakeimg=input_fakeimg:cuda(); df_mnllik=df_mnllik:cuda();
input_label_onehot = input_label_onehot:cuda(); noise_vis=noise_vis:cuda();
if dataset == 'cifar10' or dataset == 'svhn' or dataset == 'mnist' then
c10t.data = c10t.data:double():cuda()
end
if pcall(require, 'cudnn') then
require 'cudnn'
cudnn.benchmark = true
cudnn.convert(netG, cudnn)
cudnn.convert(netD, cudnn)
cudnn.convert(L2dist, cudnn)
cudnn.convert(L1dist, cudnn)
end
netD:cuda(); netG:cuda(); criterion:cuda(); L2dist:cuda(); L1dist:cuda();
end
parametersD, gradParametersD = netD:getParameters()
parametersG, gradParametersG = netG:getParameters()
if opt.display then disp = require 'display' end
--local nllik=nn.Sequential()
--nllik.add(nn.Mul)
-- make the pairwise distance between real image and fake image global to save computation! ok we can not save computation :P
local function set_noise(n,l)
for i = 1, opt.batchSize do
n[{{i},{1,nlabel},{1},{1}}]:fill(0)
n[i][l[i]][1][1]=1
end
end
-- create closure to evaluate f(X) and df/dX of discriminator
local fDx = function(x)
gradParametersD:zero()
-- train with real
data_tm:reset(); data_tm:resume()
--local real = data:getBatch()
mnist_getBatch()
data_tm:stop()
--input:copy(real)
label:fill(real_label)
local outputR = netD:forward(input):clone()
-- term 1 of cost negetive log liklihood, I disable this part now.
mnllik=torch.mean(torch.sum(opt.gamma*torch.cmul(outputR,input_label_onehot),2)) -- changed by GQ: remove the factor of -1
netD:backward(input, opt.gamma*input_label_onehot/opt.batchSize) -- df_mnllik = opt.gamma*input_label_onehot/opt.batchSize
--opt.gamma = opt.gamma * opt.gamma_decay
-- train with fake
if opt.noise == 'uniform' then -- regenerate random noise
noise:uniform(-1, 1)
elseif opt.noise == 'normal' then
noise:normal(0, 1)
end
set_noise(noise,input_label) -- set_noise will attach one_hot encoding of labels to noise to output conditioned samples.
local fake = netG:forward(noise)
input_fakeimg:copy(fake)
local pdist=L1dist:forward({input:view(opt.batchSize,nc* opt.fineSize* opt.fineSize),input_fakeimg:view(opt.batchSize,nc* opt.fineSize* opt.fineSize)})
pdist:mul(opt.lambda) -- for discriminator this will beome constant doesn't need backward
local outputF = netD:forward(input_fakeimg):clone()
cost1R = torch.sum(torch.cmul(outputR,input_label_onehot),2)
cost1F = torch.sum(torch.cmul(outputF,input_label_onehot),2)
local cost1=pdist+cost1R-cost1F
mar = pdist:mean()
local error_hinge = criterion:forward(cost1, label)
local df_error_hinge = criterion:backward(cost1, label)
netD:backward(input_fakeimg, -1*torch.cmul(df_error_hinge:view(opt.batchSize,1):expandAs(input_label_onehot),input_label_onehot)) -- changed by GQ: add mul(-1)
--accGradD = gradParametersD:clone()
--gradParametersD:zero()
netD:forward(input) -- we have to run the forward pass one more time on input of real image to make sure that the backward gradients are computed correctly on netD
netD:backward(input,torch.cmul(df_error_hinge:view(opt.batchSize,1):expandAs(input_label_onehot),input_label_onehot)) -- changed by GQ: add mul(-1) to change it back
--accGradD = accGradD + gradParametersD
errD = error_hinge + mnllik
--print(('gradD:%.4f'):format(torch.mean(torch.abs(accGradD))))
--print(('gradD:%.4f'):format(torch.mean(torch.abs(gradParametersD))))
return errD, gradParametersD+opt.decay_rate*x --accGradD+opt.decay_rate*x
end
-- create closure to evaluate f(X) and df/dX of generator
local fGx = function(x)
gradParametersG:zero()
gradParametersD:zero()
--local fake_img = netG:forward(noise)
local outputF = netD:forward(input_fakeimg)
errG = torch.mean(torch.cmul(outputF,input_label_onehot)) * nlabel
local df_error_hinge=(1/(opt.batchSize))* input_label_onehot -- outputF:clone():fill(1)
--pow(outputF,0)
local df_outputF = netD:updateGradInput(input_fakeimg,df_error_hinge)
--local df_outputF = netD:backward(fake_img,df_error_hinge)
netG:backward(noise,df_outputF)
--print(('gradG:%.4f'):format(torch.mean(torch.abs(gradParametersG))))
return errG, gradParametersG+opt.decay_rate*x
end
-- train
for epoch = 1, opt.niter do
epoch_tm:reset()
counter = 0
for i = 1, math.min(size_train, opt.ntrain), opt.batchSize do
tm:reset()
--counterN=torch.round(counter/1)
--if counterN%2==0 then
-- (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
optim.adam(fDx, parametersD, optimStateD)-- original
--optim.sgd(fDx, parametersD, optimStateDsgd)
print(('mean of parametersD:%.10f'):format(parametersD*parametersD))
--end
--if counterN%2 == 1 then
-- (2) Update G network: maximize log(D(G(z)))
optim.adam(fGx, parametersG, optimStateG)
--optim.sgd(fGx, parametersG, optimStateGsgd)
print(('mean of parametersG:%.10f'):format(parametersG*parametersG))
--end
-- display
counter = counter + 1
if counter % 10 == 0 and opt.display then -- original counter % 10
local fake = netG:forward(noise_vis)
--local real = data:getBatch()
real=input:clone()
disp.image(fake, {win=opt.display_id, title=opt.name})
disp.image(real, {win=opt.display_id * 3, title=opt.name, nrow=opt.nex})
end
-- logging
if ((i-1) / opt.batchSize) % 1 == 0 then
print(('Epoch: [%d][%8d / %8d]\t Time: %.3f DataTime: %.3f '
.. ' Err_G: %.4f Err_D: %.4f mnllik: %.4f costR:%.4f costF:%.4f meanD:%.4f mem:%d kb'):format(
epoch, ((i-1) / opt.batchSize),
math.floor(math.min(size_train, opt.ntrain) / opt.batchSize),
tm:time().real, data_tm:time().real,
errG and errG or -1, errD and errD or -1, mnllik, cost1R:mean(), cost1F:mean(), mar, collectgarbage("count")))
end
collectgarbage()
end
paths.mkdir('checkpoints')
parametersD, gradParametersD = nil, nil -- nil them to avoid spiking memory
parametersG, gradParametersG = nil, nil
torch.save('checkpoints/' .. opt.name .. '_' .. epoch .. '_net_G.t7', netG:clearState())
torch.save('checkpoints/' .. opt.name .. '_' .. epoch .. '_net_D.t7', netD:clearState())
parametersD, gradParametersD = netD:getParameters() -- reflatten the params and get them
parametersG, gradParametersG = netG:getParameters()
print(('End of epoch %d / %d \t Time Taken: %.3f'):format(
epoch, opt.niter, epoch_tm:time().real))
----------------------------------- test-------------------------------------------------------
if dataset == 'svhn' or dataset == 'cifar10' or dataset == 'mnist' then
local outputT = netD:forward(c10t.data)
local mpred, pred = torch.min(outputT,2)
local err = torch.ne(pred:view(size_test):long(),(c10t.label+1):long()):sum()
print(('Error number: %d, Test error: %.4f'):format(err, err/size_test))
end
end