-
Notifications
You must be signed in to change notification settings - Fork 94
/
Copy pathgradio_app.py
246 lines (190 loc) · 11.6 KB
/
gradio_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import torch
import argparse
from nerf.provider import NeRFDataset
from nerf.utils import *
import gradio as gr
import gc
print(f'[INFO] loading options..')
# fake config object, this should not be used in CMD, only allow change from gradio UI.
parser = argparse.ArgumentParser()
parser.add_argument('--text', default=None, help="text prompt")
parser.add_argument('--negative', default='', type=str, help="negative text prompt")
parser.add_argument('--test', action='store_true', help="test mode")
parser.add_argument('--eval_interval', type=int, default=10, help="evaluate on the valid set every interval epochs")
parser.add_argument('--workspace', type=str, default='trial_gradio')
parser.add_argument('--guidance', type=str, default='stable-diffusion', help='choose from [stable-diffusion, clip]')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--save_mesh', action='store_true', help="export an obj mesh with texture")
parser.add_argument('--mcubes_resolution', type=int, default=256, help="mcubes resolution for extracting mesh")
parser.add_argument('--decimate_target', type=int, default=1e5, help="target face number for mesh decimation")
### training options
parser.add_argument('--iters', type=int, default=10000, help="training iters")
parser.add_argument('--lr', type=float, default=1e-3, help="initial learning rate")
parser.add_argument('--ckpt', type=str, default='latest')
parser.add_argument('--cuda_ray', action='store_true', help="use CUDA raymarching instead of pytorch")
parser.add_argument('--max_steps', type=int, default=1024, help="max num steps sampled per ray (only valid when using --cuda_ray)")
parser.add_argument('--num_steps', type=int, default=64, help="num steps sampled per ray (only valid when not using --cuda_ray)")
parser.add_argument('--upsample_steps', type=int, default=64, help="num steps up-sampled per ray (only valid when not using --cuda_ray)")
parser.add_argument('--update_extra_interval', type=int, default=16, help="iter interval to update extra status (only valid when using --cuda_ray)")
parser.add_argument('--max_ray_batch', type=int, default=4096, help="batch size of rays at inference to avoid OOM (only valid when not using --cuda_ray)")
parser.add_argument('--warmup_iters', type=int, default=1000, help="training iters that only use albedo shading")
parser.add_argument('--uniform_sphere_rate', type=float, default=0.5, help="likelihood of sampling camera location uniformly on the sphere surface area")
# model options
parser.add_argument('--bg_radius', type=float, default=1.4, help="if positive, use a background model at sphere(bg_radius)")
parser.add_argument('--density_activation', type=str, default='softplus', choices=['softplus', 'exp'], help="density activation function")
parser.add_argument('--density_thresh', type=float, default=10, help="threshold for density grid to be occupied")
parser.add_argument('--blob_density', type=float, default=10, help="max (center) density for the density blob")
parser.add_argument('--blob_radius', type=float, default=0.3, help="control the radius for the density blob")
# network backbone
parser.add_argument('--fp16', action='store_true', help="use float16 for training")
parser.add_argument('--vram_O', action='store_true', help="optimization for low VRAM usage")
parser.add_argument('--backbone', type=str, default='grid', help="nerf backbone, choose from [grid, vanilla]")
parser.add_argument('--optim', type=str, default='adan', choices=['adan', 'adam', 'adamw'], help="optimizer")
parser.add_argument('--sd_version', type=str, default='2.1', choices=['1.5', '2.0', '2.1'], help="stable diffusion version")
parser.add_argument('--hf_key', type=str, default=None, help="hugging face Stable diffusion model key")
# rendering resolution in training, decrease this if CUDA OOM.
parser.add_argument('--w', type=int, default=64, help="render width for NeRF in training")
parser.add_argument('--h', type=int, default=64, help="render height for NeRF in training")
parser.add_argument('--jitter_pose', action='store_true', help="add jitters to the randomly sampled camera poses")
### dataset options
parser.add_argument('--bound', type=float, default=1, help="assume the scene is bounded in box(-bound, bound)")
parser.add_argument('--dt_gamma', type=float, default=0, help="dt_gamma (>=0) for adaptive ray marching. set to 0 to disable, >0 to accelerate rendering (but usually with worse quality)")
parser.add_argument('--min_near', type=float, default=0.1, help="minimum near distance for camera")
parser.add_argument('--radius_range', type=float, nargs='*', default=[1.0, 1.5], help="training camera radius range")
parser.add_argument('--fovy_range', type=float, nargs='*', default=[40, 70], help="training camera fovy range")
parser.add_argument('--angle_overhead', type=float, default=30, help="[0, angle_overhead] is the overhead region")
parser.add_argument('--angle_front', type=float, default=60, help="[0, angle_front] is the front region, [180, 180+angle_front] the back region, otherwise the side region.")
parser.add_argument('--lambda_entropy', type=float, default=1e-4, help="loss scale for alpha entropy")
parser.add_argument('--lambda_opacity', type=float, default=0, help="loss scale for alpha value")
parser.add_argument('--lambda_orient', type=float, default=1e-2, help="loss scale for orientation")
parser.add_argument('--lambda_smooth', type=float, default=0, help="loss scale for surface smoothness")
### GUI options
parser.add_argument('--gui', action='store_true', help="start a GUI")
parser.add_argument('--W', type=int, default=800, help="GUI width")
parser.add_argument('--H', type=int, default=800, help="GUI height")
parser.add_argument('--radius', type=float, default=3, help="default GUI camera radius from center")
parser.add_argument('--fovy', type=float, default=60, help="default GUI camera fovy")
parser.add_argument('--light_theta', type=float, default=60, help="default GUI light direction in [0, 180], corresponding to elevation [90, -90]")
parser.add_argument('--light_phi', type=float, default=0, help="default GUI light direction in [0, 360), azimuth")
parser.add_argument('--max_spp', type=int, default=1, help="GUI rendering max sample per pixel")
parser.add_argument('--need_share', type=bool, default=False, help="do you want to share gradio app to external network?")
opt = parser.parse_args()
# default to use -O !!!
opt.fp16 = True
opt.cuda_ray = True
opt.vram_O = True
# opt.lambda_entropy = 1e-4
# opt.lambda_opacity = 0
if opt.backbone == 'vanilla':
from nerf.network import NeRFNetwork
elif opt.backbone == 'grid':
from nerf.network_grid import NeRFNetwork
else:
raise NotImplementedError(f'--backbone {opt.backbone} is not implemented!')
print(opt)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f'[INFO] loading models..')
if opt.guidance == 'stable-diffusion':
from guidance.sd_utils import StableDiffusion
guidance = StableDiffusion(device, opt.fp16, opt.vram_O, opt.sd_version, opt.hf_key)
elif opt.guidance == 'clip':
from guidance.clip_utils import CLIP
guidance = CLIP(device)
else:
raise NotImplementedError(f'--guidance {opt.guidance} is not implemented.')
train_loader = NeRFDataset(opt, device=device, type='train', H=opt.h, W=opt.w, size=100).dataloader()
valid_loader = NeRFDataset(opt, device=device, type='val', H=opt.H, W=opt.W, size=5).dataloader()
test_loader = NeRFDataset(opt, device=device, type='test', H=opt.H, W=opt.W, size=100).dataloader()
print(f'[INFO] everything loaded!')
trainer = None
model = None
# define UI
with gr.Blocks(css=".gradio-container {max-width: 512px; margin: auto;}") as demo:
# title
gr.Markdown('[Stable-DreamFusion](https://github.com/ashawkey/stable-dreamfusion) Text-to-3D Example')
# inputs
prompt = gr.Textbox(label="Prompt", max_lines=1, value="a DSLR photo of a koi fish")
iters = gr.Slider(label="Iters", minimum=1000, maximum=20000, value=5000, step=100)
seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True)
button = gr.Button('Generate')
# outputs
image = gr.Image(label="image", visible=True)
video = gr.Video(label="video", visible=False)
logs = gr.Textbox(label="logging")
# gradio main func
def submit(text, iters, seed):
global trainer, model
# seed
opt.seed = seed
opt.text = text
opt.iters = iters
seed_everything(seed)
# clean up
if trainer is not None:
del model
del trainer
gc.collect()
torch.cuda.empty_cache()
print('[INFO] clean up!')
# simply reload everything...
model = NeRFNetwork(opt)
if opt.optim == 'adan':
from optimizer import Adan
# Adan usually requires a larger LR
optimizer = lambda model: Adan(model.get_params(5 * opt.lr), eps=1e-15)
elif opt.optim == 'adamw':
optimizer = lambda model: torch.optim.AdamW(model.get_params(opt.lr), betas=(0.9, 0.99), eps=1e-15)
else: # adam
optimizer = lambda model: torch.optim.Adam(model.get_params(opt.lr), betas=(0.9, 0.99), eps=1e-15)
scheduler = lambda optimizer: optim.lr_scheduler.LambdaLR(optimizer, lambda iter: 1) # fixed
trainer = Trainer('df', opt, model, guidance, device=device, workspace=opt.workspace, optimizer=optimizer, ema_decay=0.95, fp16=opt.fp16, lr_scheduler=scheduler, use_checkpoint=opt.ckpt, eval_interval=opt.eval_interval, scheduler_update_every_step=True)
# train (every ep only contain 8 steps, so we can get some vis every ~10s)
STEPS = 8
max_epochs = np.ceil(opt.iters / STEPS).astype(np.int32)
# we have to get the explicit training loop out here to yield progressive results...
loader = iter(valid_loader)
start_t = time.time()
for epoch in range(max_epochs):
trainer.train_gui(train_loader, step=STEPS)
# manual test and get intermediate results
try:
data = next(loader)
except StopIteration:
loader = iter(valid_loader)
data = next(loader)
trainer.model.eval()
if trainer.ema is not None:
trainer.ema.store()
trainer.ema.copy_to()
with torch.no_grad():
with torch.cuda.amp.autocast(enabled=trainer.fp16):
preds, preds_depth = trainer.test_step(data, perturb=False)
if trainer.ema is not None:
trainer.ema.restore()
pred = preds[0].detach().cpu().numpy()
# pred_depth = preds_depth[0].detach().cpu().numpy()
pred = (pred * 255).astype(np.uint8)
yield {
image: gr.update(value=pred, visible=True),
video: gr.update(visible=False),
logs: f"training iters: {epoch * STEPS} / {iters}, lr: {trainer.optimizer.param_groups[0]['lr']:.6f}",
}
# test
trainer.test(test_loader)
results = glob.glob(os.path.join(opt.workspace, 'results', '*rgb*.mp4'))
assert results is not None, "cannot retrieve results!"
results.sort(key=lambda x: os.path.getmtime(x)) # sort by mtime
end_t = time.time()
yield {
image: gr.update(visible=False),
video: gr.update(value=results[-1], visible=True),
logs: f"Generation Finished in {(end_t - start_t)/ 60:.4f} minutes!",
}
button.click(
submit,
[prompt, iters, seed],
[image, video, logs]
)
# concurrency_count: only allow ONE running progress, else GPU will OOM.
demo.queue(concurrency_count=1)
demo.launch(share=opt.need_share)