forked from quantinfo/ng-rc-paper-code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLorenzPredictZQuadraticNVARtimedelay-RK23.py
211 lines (168 loc) · 6.74 KB
/
LorenzPredictZQuadraticNVARtimedelay-RK23.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# -*- coding: utf-8 -*-
"""
Created on Sat Feb 20 13:17:10 2021
NVAR with time delays for Lorenz prediction. Don't be efficient for now.
Measure x,y, predict z
@author: Dan
"""
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import solve_ivp
##
## Parameters
##
# time step
dt=0.05
# units of time to warm up NVAR, need to have warmup_pts >= 1
warmup = 5.
# units of time to train for
traintime = 20.
# units of time to test for
testtime=45.
# total time to run for
maxtime = warmup+traintime+testtime
# discrete-time versions of the times defined above
warmup_pts=round(warmup/dt)
traintime_pts=round(traintime/dt)
warmtrain_pts=warmup_pts+traintime_pts
testtime_pts=round(testtime/dt)
maxtime_pts=round(maxtime/dt)
# input dimension
d = 3
# number of time delay taps
k = 4
# number of time steps between taps. skip = 1 means take consecutive points
skip = 5
# size of linear part of feature vector (leave out z)
dlin = k*(d-1)
# size of nonlinear part of feature vector
dnonlin = int(dlin*(dlin+1)/2)
# total size of feature vector: linear + nonlinear
dtot = dlin + dnonlin
# ridge parameter for regression
ridge_param = .05
# make sure we have enough warmup time
assert k*skip <= warmup_pts
# t values for whole evaluation time
# (need maxtime_pts + 1 to ensure a step of dt)
t_eval=np.linspace(0,maxtime,maxtime_pts+1)
##
## Lorenz '63
##
sigma = 10
beta = 8 / 3
rho = 28
def lorenz(t, y):
dy0 = sigma * (y[1] - y[0])
dy1 = y[0] * (rho - y[2]) - y[1]
dy2 = y[0] * y[1] - beta * y[2]
# since lorenz is 3-dimensional, dy/dt should be an array of 3 values
return [dy0, dy1, dy2]
# I integrated out to t=50 to find points on the attractor, then use these as the initial conditions
lorenz_soln = solve_ivp(lorenz, (0, maxtime), [17.67715816276679, 12.931379185960404, 43.91404334248268] , t_eval=t_eval, method='RK45')
# calculate standard deviation of z component
zstd = np.std(lorenz_soln.y[2,:])
##
## NVAR
##
# create an array to hold the linear part of the feature vector
x = np.zeros((dlin,maxtime_pts))
# create an array to hold the full feature vector for all time after warmup
# (use ones so the constant term is already 1)
out = np.ones((dtot+1,maxtime_pts-warmup_pts))
# fill in the linear part of the feature vector for all times
for delay in range(k):
for j in range(delay,maxtime_pts):
# only include x and y
x[(d-1)*delay:(d-1)*(delay+1),j]=lorenz_soln.y[0:2,j-delay*skip]
# copy over the linear part (shift over by one to account for constant)
# unlike forecasting, we can do this all in one shot, and we don't need to
# shift times for one-step-ahead prediction
out[1:dlin+1,:]=x[:,warmup_pts:maxtime_pts]
# fill in the non-linear part
cnt=0
for row in range(dlin):
for column in range(row,dlin):
# shift by one for constant
out[dlin+1+cnt,:]=x[row,warmup_pts:maxtime_pts]*x[column,warmup_pts:maxtime_pts]
cnt += 1
# ridge regression: train W_out to map out to Lorenz z
W_out = lorenz_soln.y[2,warmup_pts:warmtrain_pts] @ out[:,0:traintime_pts].T @ np.linalg.pinv(out[:,0:traintime_pts] @ out[:,0:traintime_pts].T + ridge_param*np.identity(dtot+1))
# once we have W_out, we can predict the entire shot
# apply W_out to the feature vector to get the output
# this includes both training and testing phases
z_predict = W_out @ out[:,:]
# calculate NRMSE between true Lorenz z and training output
rms = np.sqrt(np.mean((lorenz_soln.y[2,warmup_pts:warmtrain_pts]-z_predict[0:traintime_pts])**2))
print('training rms: '+str(rms))
print('training nrms: '+str(rms/zstd))
# calculate NRMSE between true Lorenz z and prediction
rms = np.sqrt(np.mean((lorenz_soln.y[2,warmtrain_pts:maxtime_pts]-z_predict[traintime_pts:maxtime_pts-warmup_pts])**2))
print('testing rms: '+str(rms))
print('testing nrms: '+str(rms/zstd))
##
## Plot
##
t_linewidth=.8
fig1 = plt.figure()
fig1.set_figheight(8)
fig1.set_figwidth(12)
h=240
w=2
# top left of grid is 0,0
axs1 = plt.subplot2grid(shape=(h,w), loc=(0, 0), colspan=1, rowspan=30)
axs2 = plt.subplot2grid(shape=(h,w), loc=(36, 0), colspan=1, rowspan=30)
axs3 = plt.subplot2grid(shape=(h,w), loc=(72, 0), colspan=1, rowspan=30)
axs4 = plt.subplot2grid(shape=(h,w), loc=(132, 0), colspan=1, rowspan=30)
axs5 = plt.subplot2grid(shape=(h,w), loc=(168, 0), colspan=1, rowspan=30)
axs6 = plt.subplot2grid(shape=(h,w), loc=(204, 0),colspan=1, rowspan=30)
# training phase x
axs1.set_title('training phase')
axs1.plot(t_eval[warmup_pts:warmtrain_pts]-warmup,x[0,warmup_pts:warmtrain_pts],color='b',linewidth=t_linewidth)
axs1.set_ylabel('x')
axs1.axes.xaxis.set_ticklabels([])
axs1.axes.set_xbound(-.08,traintime+.05)
axs1.axes.set_ybound(-21.,21.)
axs1.text(-.14,.9,'a)', ha='left', va='bottom',transform=axs1.transAxes)
# training phase y
axs2.plot(t_eval[warmup_pts:warmtrain_pts]-warmup,x[1,warmup_pts:warmtrain_pts],color='b',linewidth=t_linewidth)
axs2.set_ylabel('y')
axs2.axes.xaxis.set_ticklabels([])
axs2.axes.set_xbound(-.08,traintime+.05)
axs2.axes.set_ybound(-26.,26.)
axs2.text(-.14,.9,'b)', ha='left', va='bottom',transform=axs2.transAxes)
# training phase z
axs3.plot(t_eval[warmup_pts:warmtrain_pts]-warmup,lorenz_soln.y[2,warmup_pts:warmtrain_pts],color='b',linewidth=t_linewidth)
axs3.plot(t_eval[warmup_pts:warmtrain_pts]-warmup,z_predict[0:traintime_pts],color='r',linewidth=t_linewidth)
axs3.set_ylabel('z')
axs3.set_xlabel('time')
axs3.axes.set_xbound(-.08,traintime+.05)
axs3.axes.set_ybound(3.,48.)
axs3.text(-.14,.9,'c)', ha='left', va='bottom',transform=axs3.transAxes)
# testing phase x
axs4.set_title('testing phase')
axs4.plot(t_eval[warmtrain_pts:maxtime_pts]-warmup,x[0,warmtrain_pts:maxtime_pts],color='b',linewidth=t_linewidth)
axs4.set_ylabel('x')
axs4.axes.xaxis.set_ticklabels([])
axs4.axes.set_ybound(-21.,21.)
axs4.axes.set_xbound(traintime-.5,maxtime-warmup+.5)
axs4.text(-.14,.9,'d)', ha='left', va='bottom',transform=axs4.transAxes)
# testing phase y
axs5.plot(t_eval[warmtrain_pts:maxtime_pts]-warmup,x[1,warmtrain_pts:maxtime_pts],color='b',linewidth=t_linewidth)
axs5.set_ylabel('y')
axs5.axes.xaxis.set_ticklabels([])
axs5.axes.set_ybound(-26.,26.)
axs5.axes.set_xbound(traintime-.5,maxtime-warmup+.5)
axs5.text(-.14,.9,'e)', ha='left', va='bottom',transform=axs5.transAxes)
# testing phose z
axs6.plot(t_eval[warmtrain_pts:maxtime_pts]-warmup,lorenz_soln.y[2,warmtrain_pts:maxtime_pts],color='b',linewidth=t_linewidth)
axs6.plot(t_eval[warmtrain_pts:maxtime_pts]-warmup,z_predict[traintime_pts:maxtime_pts-warmup_pts],color='r',linewidth=t_linewidth)
axs6.set_ylabel('z')
axs6.set_xlabel('time')
axs6.axes.set_ybound(3.,48.)
axs6.axes.set_xbound(traintime-.5,maxtime-warmup+.5)
axs6.text(-.14,.9,'f)', ha='left', va='bottom',transform=axs6.transAxes)
plt.savefig('infer-lorenz.png')
plt.savefig('infer-lorenz.svg')
plt.savefig('infer-lorenz.eps')
plt.savefig('infer-lorenz.pdf')