forked from d909b/heart_rhythm_attentive_rnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnext.sh
executable file
·40 lines (36 loc) · 1.64 KB
/
next.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#! /bin/bash
#
# next.sh - Predicts what type of rhythm a given single ECG file (passed as the first parameter) contains.
#
# Copyright (C) 2017 Patrick Schwab, ETH Zurich
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
set -e
set -o pipefail
export PYTHONPATH=
export KERAS_BACKEND=theano
export THEANO_FLAGS="mode=FAST_COMPILE,optimizer=fast_compile,optimizer_excluding=inplace,reoptimize_unpickled_function=False,allow_gc=False,optimizer_including=local_remove_all_assert"
RECORD=$1
python app_lvl2_blender.py \
--dataset="$(pwd)" \
--single_file="${RECORD}" \
--do_train=False \
--multi_class \
--early_gc_disable \
--load_meta_params="./models/meta-params.pickle" \
--ensemble="./models/ensemble_precompiled.json" \
--encoder_model="./models/ae_encoder.h5.pickle" \
--morph_encoder_model="./models/stae_3l_p0_gleveled_dim24-ae-75-0.0528_encoder.h5.pickle,./models/stae_3l_p0_gleveled_dim24-ae-301-0.0434_1_encoder.h5.pickle,./models/stae_3l_p0_gleveled_dim24-ae-300-0.0811_2_encoder.h5.pickle" \
--load_existing="./models/bl_131_full_val-blender-60-0.4171.h5.pickle" >> answers.txt