-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
104 lines (83 loc) · 4.48 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import (Dense, Dropout, Activation, Flatten, Input, Reshape,
Conv2D, MaxPooling2D, TimeDistributed,
GlobalAveragePooling1D)
from tensorflow.keras.optimizers import SGD
from tensorflow.keras.regularizers import l2
num_labels = 10
def build_model(frames=128, bands=128, f_size = 5, channels = 0):
model = Sequential()
if channels == 0:
# input shape : [samples, frames, bands]
model.add(Input(shape=(frames, bands)))
model.add(Reshape(target_shape=(frames,bands,1))) # add channel dim
else:
# input shape: [samples, frames, bands, channels]
model.add(Input(shape=(frames, bands, channels)))
# Layer 1 - 24 filters with a receptive field of (f,f), i.e. W has the
# shape (24,f,f,1). This is followed by (4,2) max-pooling over the last
# two dimensions and a ReLU activation function
model.add(Conv2D(24, f_size, padding='valid'))
model.add(MaxPooling2D(pool_size=(4, 2)))
model.add(Activation('relu'))
# Layer 2 - 48 filters with a receptive field of (f,f), i.e. W has the
# shape (48, 24, f, f). Like L1 this is followed by (4,2) max-pooling
# and a ReLU activation function.
model.add(Conv2D(48, f_size, padding='valid'))
model.add(MaxPooling2D(pool_size=(4, 2)))
model.add(Activation('relu'))
# Layer 3 - 48 filters with a receptive field of (f,f), i.e. W has the
# shape (48, 48, f, f). This is followed by a ReLU but no pooling.
model.add(Conv2D(48, f_size, padding='valid'))
model.add(Activation('relu'))
# flatten output into a single dimension
model.add(Flatten())
model.add(Dropout(0.5))
# Layer 4 - a fully connected NN layer of 64 hidden units, L2 penalty of 0.001
model.add(Dense(64, kernel_regularizer=l2(0.001)))
model.add(Activation('relu'))
model.add(Dropout(0.5))
# Layer 5 - an output layer with one output unit per class, with L2 penalty,
# followed by a softmax activation function
model.add(Dense(num_labels, kernel_regularizer=l2(0.001)))
model.add(Activation('softmax'))
# compile model
model.compile(loss='sparse_categorical_crossentropy', metrics=['accuracy'], optimizer=SGD(lr=0.01))
return model
def build_model_multi(frames=128, bands=128, channels=1, f_size=5):
# variation of the previous model to allow to evaluate over a set of adjacent samples
# and average the output like it is done on the original paper
model = Sequential()
# input shape: [samples, frames, bands, channels]
model.add(Input(shape=(None, frames, bands, channels)))
# Layer 1 - 24 filters with a receptive field of (f,f), i.e. W has the
# shape (24,f,f,1). This is followed by (4,2) max-pooling over the last
# two dimensions and a ReLU activation function
model.add(TimeDistributed(Conv2D(24, f_size, padding='valid')))
model.add(TimeDistributed(MaxPooling2D(pool_size=(4, 2))))
model.add(TimeDistributed(Activation('relu')))
# Layer 2 - 48 filters with a receptive field of (f,f), i.e. W has the
# shape (48, 24, f, f). Like L1 this is followed by (4,2) max-pooling
# and a ReLU activation function.
model.add(TimeDistributed(Conv2D(48, f_size, padding='valid')))
model.add(TimeDistributed(MaxPooling2D(pool_size=(4, 2))))
model.add(TimeDistributed(Activation('relu')))
# Layer 3 - 48 filters with a receptive field of (f,f), i.e. W has the
# shape (48, 48, f, f). This is followed by a ReLU but no pooling.
model.add(TimeDistributed(Conv2D(48, f_size, padding='valid')))
model.add(TimeDistributed(Activation('relu')))
# flatten output into a single dimension
model.add(TimeDistributed(Flatten()))
model.add(Dropout(0.5))
# Layer 4 - a fully connected NN layer of 64 hidden units, L2 penalty of 0.001
model.add(TimeDistributed(Dense(64, kernel_regularizer=l2(0.001))))
model.add(TimeDistributed(Activation('relu')))
model.add(Dropout(0.5))
# Layer 5 - an output layer with one output unit per class, with L2 penalty,
# followed by a softmax activation function
model.add(TimeDistributed(Dense(num_labels, kernel_regularizer=l2(0.001))))
model.add(TimeDistributed((Activation('softmax'))))
model.add(GlobalAveragePooling1D()) #average across time
# compile model
model.compile(loss='sparse_categorical_crossentropy', metrics=['accuracy'], optimizer=SGD(lr=0.01))
return model