From d399617f54cd3a876b06033768b00dec8ef899be Mon Sep 17 00:00:00 2001
From: 5HT
Date: Mon, 23 Oct 2023 15:11:57 +0300
Subject: [PATCH] J-equiv
---
foundations/univalent/equiv/index.html | 18 +++++++++++-------
foundations/univalent/equiv/index.pug | 22 +++++++++++++---------
lib/foundations/univalent/equiv.anders | 6 +++---
3 files changed, 27 insertions(+), 19 deletions(-)
diff --git a/foundations/univalent/equiv/index.html b/foundations/univalent/equiv/index.html
index 76069510..0c29f09b 100644
--- a/foundations/univalent/equiv/index.html
+++ b/foundations/univalent/equiv/index.html
@@ -40,17 +40,21 @@
def idEquiv (A :U): equiv A A
:=(\(a:A) -> a, isContrSingl A)
Elimination
(Fiberwise Induction Principle).
-For any
-and it's evidence at
-there is a function . HoTT 5.8.5
def ind-Equiv (A B:U)
- (C: Π (A B:U), equiv A B →U)
- (d: C A A (idEquiv A))
- :(p: equiv A B) -> C A B p
Computation
(Fiberwise Computation of Induction Principle).
def compute-Equiv (A :U)
+For any
+and it's evidence at
+there is a function . HoTT 5.8.5
def J-equiv (A B:U)
+ (P: Π (A B:U), equiv A B →U)
+ (d: P B B (idEquiv B))
+ : Π (e: equiv A B), P A B e
+ := λ (e: equiv A B),
+ subst (single B)(\ (z: single B), P z.1 B z.2)
+ (B,idEquiv B)(A,e)
+ (contrSinglEquiv A B e) d
Computation
(Fiberwise Computation of Induction Principle).
def compute-Equiv (A :U)(C : Π (A B:U), equiv A B →U)(d: C A A (idEquiv A)):Path(C A A (idEquiv A)) d
(ind-Equiv A A C d (idEquiv A))
UNIVALENCE
The notion of univalence represents
-transport between fibrational equivalence
+transport between fibrational equivalence
as contractability of fibers and homotopical
multi-dimentional
heterogeneous path equality (HoTT 2.10):
The type
diff --git a/foundations/univalent/equiv/index.pug b/foundations/univalent/equiv/index.pug
index 34ec3c78..79295cb6 100644
--- a/foundations/univalent/equiv/index.pug
+++ b/foundations/univalent/equiv/index.pug
@@ -85,24 +85,28 @@ block content
h2 Elimination
+tex.
$\mathbf{Definition}$ (Fiberwise Induction Principle).
- For any $C : A \rightarrow B \rightarrow A \simeq B \rightarrow U$
- and it's evidence $d$ at $(A,A,\mathrm{id_\simeq}(A))$
+ For any $P : A \rightarrow B \rightarrow A \simeq B \rightarrow U$
+ and it's evidence $d$ at $(B,B,\mathrm{id_\simeq}(B))$
there is a function $\mathbf{ind}_\simeq$. HoTT 5.8.5
+tex(true).
$$
- \mathbf{ind}_\simeq(C,d) : (p: A\simeq B) \rightarrow C(A,B,p).
+ \mathbf{ind}_\simeq(P,d) : (p: A\simeq B) \rightarrow P(A,B,p).
$$
+code.
- def ind-Equiv (A B: U)
- (C: Π (A B: U), equiv A B → U)
- (d: C A A (idEquiv A))
- : (p: equiv A B) -> C A B p
+ def J-equiv (A B: U)
+ (P: Π (A B: U), equiv A B → U)
+ (d: P B B (idEquiv B))
+ : Π (e: equiv A B), P A B e
+ := λ (e: equiv A B),
+ subst (single B) (\ (z: single B), P z.1 B z.2)
+ (B,idEquiv B) (A,e)
+ (contrSinglEquiv A B e) d
br.
h2 Computation
+tex.
$\mathbf{Definition}$ (Fiberwise Computation of Induction Principle).
+code.
- def compute-Equiv (A : U)
+ def compute-Equiv (A : U)
(C : Π (A B: U), equiv A B → U)
(d: C A A (idEquiv A))
: Path (C A A (idEquiv A)) d
@@ -113,7 +117,7 @@ block content
h1 UNIVALENCE
+tex.
The notion of univalence represents
- transport between fibrational equivalence
+ transport between fibrational equivalence
as contractability of fibers and homotopical
multi-dimentional
heterogeneous path equality (HoTT 2.10):
diff --git a/lib/foundations/univalent/equiv.anders b/lib/foundations/univalent/equiv.anders
index da92cdf0..a22432a9 100644
--- a/lib/foundations/univalent/equiv.anders
+++ b/lib/foundations/univalent/equiv.anders
@@ -54,9 +54,9 @@ def isContr→isProp (A: U) (w: isContr A) (a b : A) : Path A a b
def contrSinglEquiv (A B : U) (e : equiv A B)
: Path (single B) (B,idEquiv B) (A,e)
:= isContr→isProp (single B) (EquivIsContr B) (B,idEquiv B) (A,e)
-def J-equiv (A B: U) (P: Π (A: U), equiv A B → U) (r: P B (idEquiv B))
- : Π (e: equiv A B), P A e
- := λ (e: equiv A B), subst (single B) (\ (z: single B), P z.1 z.2)
+def J-equiv (A B: U) (P: Π (A B: U), equiv A B → U) (r: P B B (idEquiv B))
+ : Π (e: equiv A B), P A B e
+ := λ (e: equiv A B), subst (single B) (\ (z: single B), P z.1 B z.2)
(B,idEquiv B) (A,e) (contrSinglEquiv A B e) r
--- [Pitts] 2016