diff --git a/lib/foundations/mltt/nat.anders b/lib/foundations/mltt/nat.anders index 92f095ca..3e917938 100644 --- a/lib/foundations/mltt/nat.anders +++ b/lib/foundations/mltt/nat.anders @@ -38,6 +38,11 @@ def two : ℕ := succ one def three : ℕ := succ two def four : ℕ := succ three def five : ℕ := succ four +def six : ℕ := succ five +def seven : ℕ := succ six +def eight : ℕ := succ seven +def nine : ℕ := succ eight +def ten : ℕ := succ nine def 5′ : ℕ := plus two three def 10′ : ℕ := mult 5′ two diff --git a/lib/foundations/univalent/equiv.anders b/lib/foundations/univalent/equiv.anders index b3b4650d..c0b67982 100644 --- a/lib/foundations/univalent/equiv.anders +++ b/lib/foundations/univalent/equiv.anders @@ -70,10 +70,15 @@ def hcomp-Glue' (A : U) (φ : I) --- Equiv as [Right] Identity System [Escardó] 2014 +--- def singl (A: U) (a: A): U := Σ (x: A), Path A a x +--- def isContr (A: U) : U := Σ (x: A), Π (y: A), Path A x y +--- def contr (A : U) (a b : A) (p : Path A a b) : Path (singl A a) (eta A a) (b, p) := (p @ i, p @ i /\ j) +--- def isContrSingl (A : U) (a : A) : isContr (singl A a) := ((a,idp A a),(\ (z:singl A a), contr A a z.1 z.2)) + def single (A : U) : U := Σ (B: U), equiv A B def single2 (A : U) : U := Σ (B: U), equiv B A axiom contrEquiv (A B : U) (p : equiv A B) : Path (single A) (A,idEquiv A) (B,p) --- := ((univ-intro B A p) @ i, univ-intro B A p @ i /\ j) +-- := ( ((univ-intro A B p) @ i, univ-intro A B p @ i /\ j)) def EquivIsContr (A: U) : isContr (single A) := ((A, idEquiv A), \(z:single A), (contrEquiv A z.1 z.2)) def isContr→isProp (A: U) (w: isContr A) (a b : A) : Path A a b := hcomp A (∂ i) (λ (j : I), [(i = 0) → a, (i = 1) → (w.2 b) @ j]) (( w.2 a @ -i) @ i) diff --git a/lib/mathematics/categories/meta/mipham.anders b/lib/mathematics/categories/meta/mipham.anders new file mode 100644 index 00000000..f5013ee2 --- /dev/null +++ b/lib/mathematics/categories/meta/mipham.anders @@ -0,0 +1,76 @@ +module mipham where +import lib/foundations/mltt/vec +option irrelevance true + +--- Формальна філософія +--- Theories Index + +def Eye : U := unit -- 01 -- Гедоністичний (rab tu dga’ ba). +def Ear : U := unit -- 02 -- Міцний (dri ma med pa). +def Nose : U := unit -- 03 -- Ілюмінуючий (’od byed pa). +def Mouth : U := unit -- 04 -- Радіантний (’od ’phro can). +def Body : U := unit -- 05 -- Незворотній (shin tu sbyang dka’ ba). +def Sems : U := unit -- 06 -- Ясний (mngon du gyur ba). +def Nyid3 : U := unit -- 07 -- Прогресуючий (ring du song ba). +def Nyid2 : U := unit -- 08 -- Непорушний (mi gyo ba). +def Nyid1 : U := unit -- 09 -- Неперевершений (legs pa’i blo gros). +def Nyid0 : U := unit -- 10 -- Хмари Дхарми (chos kyi sprin). + +def nyid3 : Vec U zero := star + +def HomotopyTheory : U := unit +def HomologicalAlgebra : U := unit +def AlgebraicGeometry : U := unit +def DifferentialGeometry : U := unit +def SuperGeometry : U := unit + +def nyid2 : Vec U five + := vsucc U four HomotopyTheory + ( vsucc U three HomologicalAlgebra + ( vsucc U two AlgebraicGeometry + ( vsucc U one DifferentialGeometry + ( vsucc U zero SuperGeometry + ( vzero U ))))) + +def Abelian : U := unit +def Derived : U := unit +def Model : U := unit +def Spectra : U := unit +def T-Spectra : U := unit +def Yogas : U := unit + +def nyid1 : Vec U six + := vsucc U five Abelian + ( vsucc U four Derived + ( vsucc U three Model + ( vsucc U two Spectra + ( vsucc U one T-Spectra + ( vsucc U zero Yogas + ( vzero U )))))) + +def Infinity : U := unit +def Diagram : U := unit +def LocalCartesianClosed : U := unit +def SymmetricMonoidal : U := unit + +def nyid0 : Vec U four + := vsucc U three Infinity + ( vsucc U two Diagram + ( vsucc U one LocalCartesianClosed + ( vsucc U zero SymmetricMonoidal + ( vzero U )))) + +def к := summa (X: U), X + +def Being : Vec к ten + := vsucc к nine (Vec U four, nyid0) + ( vsucc к eight (Vec U six, nyid1) + ( vsucc к seven (Vec U five, nyid2) + ( vsucc к six (Vec U zero, nyid3) + ( vsucc к five (Sems, star) + ( vsucc к four (Body, star) + ( vsucc к three (Mouth, star) + ( vsucc к two (Nose, star) + ( vsucc к one (Ear, star) + ( vsucc к zero (Eye, star) + ( vzero U ))))))))))