-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathCurveCompare.cxx
995 lines (883 loc) · 35.2 KB
/
CurveCompare.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
#include <iostream>
#include <fstream>
#include <math.h>
#include <vector>
#include <string>
#include <iomanip>
// VTK include
#include <vtkPolyDataReader.h>
#include <vtkXMLPolyDataReader.h>
#include <vtkPolyData.h>
#include <vtkSmartPointer.h>
#include <vtkPointData.h>
#include <vtkSpline.h>
#include <vtkParametricSpline.h>
#include <vtkCellArray.h>
#include <vtkPoints.h>
#include <vtkSplineRepresentation.h>
#include <vtkMath.h>
#include <vtkParametricFunctionSource.h>
#include <vtkCardinalSpline.h>
#include <vtkSCurveSpline.h>
#include <vtkObject.h>
#include <vtkPolyLine.h>
// ITK include
#include <itkImage.h>
#include <itkVectorContainer.h>
#include <itkVector.h>
#include <itkDiffusionTensor3D.h>
#include <itkImageAdaptor.h>
#include <itkPoint.h>
#include <itkImageFileReader.h>
#include <itkImageFileWriter.h>
#include <itkContinuousIndex.h>
#include <itkSpatialObject.h>
#include <itkLabelOverlapMeasuresImageFilter.h>
#include <itkKappaStatisticImageToImageMetric.h>
#include "itkTranslationTransform.h"
#include "itkNearestNeighborInterpolateImageFunction.h"
#include "itkImageRegionIterator.h"
// VNL Includes
#include <vnl/vnl_matrix.h>
#include <vnl/vnl_vector_fixed.h>
#include <CurveCompareCLP.h>
using namespace std;
std::vector<double> FillOverlapTable(vtkSmartPointer<vtkPolyData> Source, vtkSmartPointer<vtkPolyData> Target,string ReferenceScalarVolume,int voxelLabel)
{ std::cout<<"Overlap calculating..."<<std::endl;
std::vector<double> OverlapTable;
vtkPoints* SourcePoints = Source->GetPoints();
vtkPoints* TargetPoints = Target->GetPoints();
int numberPointsSource=SourcePoints->GetNumberOfPoints();
int numberPointsTarget=TargetPoints->GetNumberOfPoints();
const unsigned int DIM = 3;
typedef unsigned short ScalarPixelType;
typedef itk::Image<ScalarPixelType, DIM> IntImageType;
/*typedef itk::DiffusionTensor3D<double> TensorPixelType;
typedef itk::Image<TensorPixelType, DIM> TensorImageType;
// Setup tensor file if available
typedef itk::ImageFileReader<TensorImageType> TensorImageReader;
TensorImageReader::Pointer tensorreader = NULL;
tensorreader = TensorImageReader::New();
tensorreader->SetFileName(tensorVolume.c_str());
tensorreader->Update();*/
typedef itk::ImageFileReader<IntImageType> ScalarImageReader;
ScalarImageReader::Pointer scalarReader = NULL;
scalarReader = ScalarImageReader::New();
scalarReader->SetFileName(ReferenceScalarVolume.c_str());
scalarReader->Update();
// Need to allocate two images to write into for creating
// the fiber label maps
IntImageType::Pointer labelimage1;//classic voxelization of Source
IntImageType::Pointer labelimage2;//classic voxelization of Target
IntImageType::Pointer labelimageCountF;//voxelization of Source by counting how many fibers for each voxel
IntImageType::Pointer labelimage2CountF;//voxelization of Target by counting how many fibers for each voxel
labelimage1 = IntImageType::New();
labelimage1->SetSpacing(scalarReader->GetOutput()->GetSpacing());
labelimage1->SetOrigin(scalarReader->GetOutput()->GetOrigin());
labelimage1->SetDirection(scalarReader->GetOutput()->GetDirection());
labelimage1->SetRegions(scalarReader->GetOutput()->GetLargestPossibleRegion());
labelimage1->Allocate();
labelimage1->FillBuffer(0);
labelimageCountF = IntImageType::New();
labelimageCountF->SetSpacing(scalarReader->GetOutput()->GetSpacing());
labelimageCountF->SetOrigin(scalarReader->GetOutput()->GetOrigin());
labelimageCountF->SetDirection(scalarReader->GetOutput()->GetDirection());
labelimageCountF->SetRegions(scalarReader->GetOutput()->GetLargestPossibleRegion());
labelimageCountF->Allocate();
labelimageCountF->FillBuffer(0);
labelimage2 = IntImageType::New();
labelimage2->SetSpacing(scalarReader->GetOutput()->GetSpacing());
labelimage2->SetOrigin(scalarReader->GetOutput()->GetOrigin());
labelimage2->SetDirection(scalarReader->GetOutput()->GetDirection());
labelimage2->SetRegions(scalarReader->GetOutput()->GetLargestPossibleRegion());
labelimage2->Allocate();
labelimage2->FillBuffer(0);
labelimage2CountF = IntImageType::New();
labelimage2CountF->SetSpacing(scalarReader->GetOutput()->GetSpacing());
labelimage2CountF->SetOrigin(scalarReader->GetOutput()->GetOrigin());
labelimage2CountF->SetDirection(scalarReader->GetOutput()->GetDirection());
labelimage2CountF->SetRegions(scalarReader->GetOutput()->GetLargestPossibleRegion());
labelimage2CountF->Allocate();
labelimage2CountF->FillBuffer(0);
typedef itk::Point<double, 3> PointType;
PointType fiberpoint;
double fiberpointtemp[3];
for(int i=0;i<SourcePoints->GetNumberOfPoints();i++)
{
SourcePoints->GetPoint( i, fiberpointtemp );
for (int k=0;k<3;k++)
{
fiberpoint[k]=fiberpointtemp[k];
}
itk::ContinuousIndex<double,3> cind;
itk::Index<3> ind;
labelimage1->TransformPhysicalPointToContinuousIndex(fiberpoint, cind);
ind[0] = static_cast<long int>(vnl_math_rnd_halfinttoeven(cind[0]));
ind[1] = static_cast<long int>(vnl_math_rnd_halfinttoeven(cind[1]));
ind[2] = static_cast<long int>(vnl_math_rnd_halfinttoeven(cind[2]));
if(!labelimage1->GetLargestPossibleRegion().IsInside(ind))
{
std::cerr << "Error index: " << ind << " not in image" << std::endl;
std::cout << "Ignoring" << std::endl;
//return EXIT_FAILURE;
}
else
{
labelimageCountF->SetPixel(ind, labelimageCountF->GetPixel(ind) + 1);
//std::cout<<"value of pixel: "<<labelimageCountF->GetPixel(ind)<<std::endl;
labelimage1->SetPixel(ind, voxelLabel);
}
}
PointType fiberpoint2;
double fiberpointtemp2[3];
for(int j=0;j<TargetPoints->GetNumberOfPoints();j++)
{
TargetPoints->GetPoint( j, fiberpointtemp2 );
for (int k=0;k<3;k++)
{
fiberpoint2[k]=fiberpointtemp2[k];
}
itk::ContinuousIndex<double,3> cind2;
itk::Index<3> ind2;
labelimage2->TransformPhysicalPointToContinuousIndex(fiberpoint2, cind2);
ind2[0] = static_cast<long int>(vnl_math_rnd_halfinttoeven(cind2[0]));
ind2[1] = static_cast<long int>(vnl_math_rnd_halfinttoeven(cind2[1]));
ind2[2] = static_cast<long int>(vnl_math_rnd_halfinttoeven(cind2[2]));
if(!labelimage2->GetLargestPossibleRegion().IsInside(ind2))
{
std::cerr << "Error index: " << ind2 << " not in image" << std::endl;
std::cout << "Ignoring" << std::endl;
//return EXIT_FAILURE;
}
else
{
labelimage2CountF->SetPixel(ind2, labelimage2CountF->GetPixel(ind2) + 1);
labelimage2->SetPixel(ind2, voxelLabel);
}
}
////overlap calculation////
//With classic voxelisation
typedef itk::LabelOverlapMeasuresImageFilter <IntImageType> LabelOverlapMeasuresImageFilterType;
LabelOverlapMeasuresImageFilterType::Pointer LabelOverlapMeasuresImageFilter= LabelOverlapMeasuresImageFilterType::New();
LabelOverlapMeasuresImageFilter->SetSourceImage(labelimage1);
LabelOverlapMeasuresImageFilter->SetTargetImage(labelimage2);
LabelOverlapMeasuresImageFilter->Update();
double total=LabelOverlapMeasuresImageFilter->GetTotalOverlap();
double jaccard=LabelOverlapMeasuresImageFilter->GetUnionOverlap();
double dice=LabelOverlapMeasuresImageFilter->GetMeanOverlap();
double Volume_sim=LabelOverlapMeasuresImageFilter->GetVolumeSimilarity();
double False_negative=LabelOverlapMeasuresImageFilter->GetFalseNegativeError();
double False_positive=LabelOverlapMeasuresImageFilter->GetFalsePositiveError();
OverlapTable.push_back(total);
OverlapTable.push_back(jaccard);
OverlapTable.push_back(dice);
OverlapTable.push_back(Volume_sim);
OverlapTable.push_back(False_negative);
OverlapTable.push_back(False_positive);
std::cout<<"total: "<<total<<" jaccard: "<<jaccard<<"dice: "<<dice<<"Volume_sim: "<<Volume_sim<<"False_negative: "<<False_negative<<"False_positive: "<<False_positive<<std::endl;
//divide each voxel of Source voxelized by the total number of points to get the probability
IntImageType::Pointer img1 = IntImageType::New();
img1 = labelimageCountF;
itk::ImageRegionIterator<IntImageType> img_it1 (img1, img1->GetLargestPossibleRegion());
std::cout<<" get proba of Source "<<std::endl;
img_it1.GoToBegin();
//divide each voxel of Target voxelized by the total number of points to get the probability
IntImageType::Pointer img2 = IntImageType::New();
img2 = labelimage2CountF;
itk::ImageRegionIterator<IntImageType> img_it2 (img2, img2->GetLargestPossibleRegion());
std::cout<<" get proba of Target "<<std::endl;
img_it2.GoToBegin();
double numerator=0;
double denominator=0;
while(!img_it1.IsAtEnd() && !img_it2.IsAtEnd())
{
// Get the value of the current voxel
double val1 = img_it1.Get();
double val2= img_it2.Get();
//Get the proba on each voxel
double Pa=val1/numberPointsSource;
double Pb=val2/numberPointsTarget;
numerator+=abs(Pa-Pb);
denominator+=(Pa+Pb-(Pa*Pb));
++img_it1;
++img_it2;
}
std::cout<<"points in source : "<<numberPointsSource<<std::endl;
std::cout<<"points in target : "<<numberPointsTarget<<std::endl;
std::cout<<"compute POV "<<std::endl;
//Compute POV calculation
double POV=1-(numerator/denominator);
std::cout<<"POV : "<< POV<<std::endl;
OverlapTable.push_back(POV);
return OverlapTable;
}
std::vector<double> FillCurvatureTable(vtkSmartPointer<vtkPolyData> SourceInterpolated, vtkSmartPointer<vtkPolyData> TargetInterpolated, double stepInterpolate)
{ std::cout<<"Curvature metric calculating..."<<std::endl;
std::vector<double> CurveTable;
vtkPoints* SourcePointsNew = SourceInterpolated->GetPoints();
vtkPoints* TargetPointsNew = TargetInterpolated->GetPoints();
typedef itk::Vector<double, 3> VectorType;
std::cout<<" number of points in source: "<<SourcePointsNew->GetNumberOfPoints()<<std::endl;
std::cout<<" number of points in target: "<<TargetPointsNew->GetNumberOfPoints()<<std::endl;
vtkIdType nbpts=0, *pts=0;
double Tbis[3],Tbis2[3];
double T[3],T2[3];
double curvature1=0;
double curvature2=0;
double dsbis=0;
double dsbis2=0;
double ds=0;
double ds2=0;
int compt=1;
int compt2=1;
vtkSmartPointer<vtkCellArray> A = vtkSmartPointer<vtkCellArray>::New();
A=SourceInterpolated->GetLines();
A->InitTraversal();
std::cout<<" number of fibers in source: "<<SourceInterpolated->GetNumberOfLines()<<std::endl;
while(SourceInterpolated->GetLines()->GetNextCell(nbpts, pts))
{ std::cout<<" fibers in source number: "<<compt2<<std::endl;
vtkSmartPointer<vtkPoints> points = vtkSmartPointer<vtkPoints>::New();
vtkIdType ind=0;double coords[3];
for(int p=0; p<nbpts; p++)
{
ind=pts[p];
SourcePointsNew->GetPoint( ind, coords);
points->InsertNextPoint(coords);
}
//for each point of hte current fiber with its new points from the spline interpolation
int i=0;
for( int k=0; k<points->GetNumberOfPoints(); k++ )
{ if(k==(points->GetNumberOfPoints()-1))
{
i=k-1;
}
else
{
i=k;
}
double DistanceMin=100000;
double SourceP[3];
points->GetPoint(i,SourceP);
double TargetPoint[3];
double Distance=0;
////for each fiber of vtk file Target////
vtkIdType nbpts2=0, *pts2=0;
vtkSmartPointer<vtkCellArray> P = vtkSmartPointer<vtkCellArray>::New();
P=TargetInterpolated->GetLines();
P->InitTraversal();
while(TargetInterpolated->GetLines()->GetNextCell(nbpts2, pts2))
{
vtkSmartPointer<vtkPoints> points2 = vtkSmartPointer<vtkPoints>::New();
vtkIdType ind2=0;double coords2[3];
for(int p=0; p<nbpts2; p++)
{
ind2=pts2[p];
TargetPointsNew->GetPoint( ind2, coords2);
points2->InsertNextPoint(coords2);
}
//for each point of the current fiber with its new points from the spline interpolation
int j=0;
for( int l=0; l<points2->GetNumberOfPoints(); l++ )
{
if(l==(points2->GetNumberOfPoints()-1))
{
j=l-1;
}
else
{
j=l;
}
points2->GetPoint(j,TargetPoint);
Distance=vtkMath::Distance2BetweenPoints(SourceP,TargetPoint );
if(Distance<DistanceMin )
{
//std::cout<<"two closest points"<<SourceP[0]<<" "<<SourceP[1]<<" "<<SourceP[2]<<"and "<<TargetPoint[0]<<" "<<TargetPoint[1]<<" "<<TargetPoint[2]<<std::endl;
DistanceMin = Distance;//std::cout<<" distance : "<<DistanceMin<<std::endl;
double matchingpoint[3];matchingpoint[0]=TargetPoint[0];matchingpoint[1]=TargetPoint[1];matchingpoint[2]=TargetPoint[2];
double tempo2[3],tempo22[3];
points2->GetPoint(j+1,tempo2);
points2->GetPoint(j+2,tempo22);
ds = sqrt(vtkMath::Distance2BetweenPoints(TargetPoint,tempo2));
ds2= sqrt(vtkMath::Distance2BetweenPoints(tempo2,tempo22));
T[0] = (tempo2[0]-TargetPoint[0])/ds;
T[1] = (tempo2[1]-TargetPoint[1])/ds;
T[2] = (tempo2[2]-TargetPoint[2])/ds;
T2[0] = (tempo22[0]-tempo2[0])/ds2;
T2[1] = (tempo22[1]-tempo2[1])/ds2;
T2[2] = (tempo22[2]-tempo2[2])/ds2;
curvature2=sqrt(vtkMath::Distance2BetweenPoints(T2,T))/ds;
}
}
}
double temp2[3],temp22[3];
points->GetPoint(i+1,temp2);
points->GetPoint(i+2,temp22);
dsbis = sqrt(vtkMath::Distance2BetweenPoints(SourceP,temp2));
dsbis2= sqrt(vtkMath::Distance2BetweenPoints(temp2,temp22));
Tbis[0] = (temp2[0]-SourceP[0])/dsbis;
Tbis[1] = (temp2[1]-SourceP[1])/dsbis;
Tbis[2] = (temp2[2]-SourceP[2])/dsbis;
Tbis2[0] = (temp22[0]-temp2[0])/dsbis2;
Tbis2[1] = (temp22[1]-temp2[1])/dsbis2;
Tbis2[2] = (temp22[2]-temp2[2])/dsbis2;
curvature1=sqrt(vtkMath::Distance2BetweenPoints(Tbis2,Tbis))/dsbis;
double val =(curvature1-curvature2)*(curvature1-curvature2);
//std::cout<<" val : "<<val<<" number : "<<compt<<std::endl;
compt++;
CurveTable.push_back(val);
}
compt2++;
}
std::cout<<"Done..."<<std::endl;
return CurveTable;
}
std::vector<double> FillTangentTable(vtkSmartPointer<vtkPolyData> SourceInterpolated, vtkSmartPointer<vtkPolyData> TargetInterpolated, double stepInterpolate)
{ std::cout<<"Tangent metric calculating..."<<std::endl;
std::vector<double> TangentTable;
std::vector<double> samples1, samples2;
//for each point of the current fiber with its new points from the spline interpolation
vtkPoints* SourcePointsNew = SourceInterpolated->GetPoints();
vtkPoints* TargetPointsNew = TargetInterpolated->GetPoints();
vtkIdType nbpts=0, *pts=0;
typedef itk::Vector<double, 3> VectorType;
VectorType v1, v2;
std::cout<<" number of points in source: "<<SourcePointsNew->GetNumberOfPoints()<<std::endl;
std::cout<<" number of points in target: "<<TargetPointsNew->GetNumberOfPoints()<<std::endl;
int compt=1;
std::cout<<" number of fibers in source: "<<SourceInterpolated->GetNumberOfLines()<<std::endl;
vtkSmartPointer<vtkCellArray> A = vtkSmartPointer<vtkCellArray>::New();
A=SourceInterpolated->GetLines();
A->InitTraversal();
while(SourceInterpolated->GetLines()->GetNextCell(nbpts, pts))
{ //std::cout<<" fibers in source number: "<<compt<<std::endl;
vtkSmartPointer<vtkPoints> points = vtkSmartPointer<vtkPoints>::New();
vtkIdType ind=0;double coords[3];
for(int p=0; p<nbpts; p++)
{
ind=pts[p];
SourcePointsNew->GetPoint( ind, coords);
points->InsertNextPoint(coords);
}
//std::cout<<"number of points: "<<points->GetNumberOfPoints()<<std::endl;
for( int i=0; i<points->GetNumberOfPoints(); i++ )
{
double DistanceMin=100000;
double SourceP[3];
points->GetPoint(i,SourceP);
double TargetPoint[3];
double Distance=0;
vtkIdType nbpts2=0, *pts2=0;
vtkSmartPointer<vtkCellArray> P = vtkSmartPointer<vtkCellArray>::New();
P=TargetInterpolated->GetLines();
P->InitTraversal();
while(TargetInterpolated->GetLines()->GetNextCell(nbpts2, pts2))
{
vtkSmartPointer<vtkPoints> points2 = vtkSmartPointer<vtkPoints>::New();
vtkIdType ind2=0;double coords2[3];
for(int p=0; p<nbpts2; p++)
{
ind2=pts2[p];
TargetPointsNew->GetPoint( ind2, coords2);
points2->InsertNextPoint(coords2);
}
//for each point of the current fiber with its new points from the spline interpolation
for( int j=0; j<points2->GetNumberOfPoints(); j++ )
{
points2->GetPoint(j,TargetPoint);
Distance=vtkMath::Distance2BetweenPoints(SourceP,TargetPoint );
if(Distance<DistanceMin )
{
DistanceMin = Distance;
//std::cout<<"distance min :"<<DistanceMin<<std::endl;
double matchingpoint[3];matchingpoint[0]=TargetPoint[0];matchingpoint[1]=TargetPoint[1];matchingpoint[2]=TargetPoint[2];
double tempo1[3],tempo2[3];
if (j==0)////if we are at the beginning of the fiber////
{
points2->GetPoint(j+1,tempo2);
for(int k=0;k<3;k++)
{
v2[k]=tempo2[k]-TargetPoint[k];
}
}
if(j==points2->GetNumberOfPoints()-1)////if we are at the end of the fiber////
{
points2->GetPoint(j-1,tempo1);
for(int k=0;k<3;k++)
{
v2[k]=TargetPoint[k]-tempo1[k];
}
}
if(j!=0 && j!=points2->GetNumberOfPoints()-1)
{
points2->GetPoint(j-1,tempo1);
points2->GetPoint(j+1,tempo2);
for(int k=0;k<3;k++)
{
v2[k]=tempo2[k]-tempo1[k];
}
}
}
}
}
double temp1[3],temp2[3];
//std::cout<<"i : "<<i<<std::endl;
if (i==0)////if we are at the beginning of the fiber////
{
points->GetPoint(i+1,temp2);
for(int k=0;k<3;k++)
{
v1[k]=temp2[k]-SourceP[k];
}
}
if (i==points->GetNumberOfPoints()-1)////if we are at the end of the fiber////
{
points->GetPoint(i-1,temp1);
for(int k=0;k<3;k++)
{
v1[k]=SourceP[k]-temp1[k];
}
}
if(i!=0 && i!=points->GetNumberOfPoints()-1)
{
points->GetPoint(i-1,temp1);
points->GetPoint(i+1,temp2);
for(int k=0;k<3;k++)
{
v1[k]=temp2[k]-temp1[k];
}
}
v1.Normalize();
v2.Normalize();
//std::cout<<v1[0]<<" "<<v1[1]<<" "<<v1[2]<<std::endl;
//std::cout<<v2[0]<<" "<<v2[1]<<" "<<v2[2]<<std::endl;
double val = pow ( acos ( fabs ( v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2]) )*180/3.14159265 , 2.0);
/*if(compt==211)
std::cout<<"val : "<<(acos ( fabs ( v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2]) )*180/3.14159265)<<std::endl;*/
TangentTable.push_back(val);
}
compt++;
}
std::cout<<"done..."<<std::endl;
return TangentTable;
}
std::vector<double> FillDistanceTable(vtkSmartPointer<vtkPolyData> Source, vtkSmartPointer<vtkPolyData> Target)
{
std::cout<<"Distance (closest points) metric calculating..."<<std::endl;
std::vector<double> DistanceTable;
vtkPoints* SourcePoints = Source->GetPoints();
vtkPoints* TargetPoints = Target->GetPoints();
for(int i=0; i<SourcePoints->GetNumberOfPoints(); i++)
{
double SourcePoint[3], DistanceMin = 10000;
SourcePoints->GetPoint(i,SourcePoint);
for(int j=0; j<TargetPoints->GetNumberOfPoints(); j++)
{
double TargetPoint[3], XYZ[3], Distance;
TargetPoints->GetPoint(j,TargetPoint);
for(int k=0; k<3; k++)
XYZ[k] = TargetPoint[k]-SourcePoint[k];
Distance = sqrt(XYZ[0]*XYZ[0]+XYZ[1]*XYZ[1]+XYZ[2]*XYZ[2]);
if(Distance<DistanceMin)
DistanceMin = Distance;
}
DistanceTable.push_back(DistanceMin);
}
std::cout<<"Done..."<<std::endl;
return DistanceTable;
}
void GetBounds(std::vector<std::vector<double> > DistanceTable, double Bounds[2])
{
double Min = 100000, Max = -1;
for(unsigned int i=0; i<DistanceTable.size(); i++)
{
for(unsigned int j=0; j<DistanceTable[i].size(); j++)
{
if(DistanceTable[i][j]<Min)
Min = DistanceTable[i][j];
if(DistanceTable[i][j]>Max)
Max = DistanceTable[i][j];
}
}
Bounds[0] = Min;
Bounds[1] = Max;
}
int GetFrequency(std::vector<std::vector<double> > DistanceTable, double IntervalMin, double IntervalMax)
{
int Frequency=0;
for(unsigned int i=0; i<DistanceTable.size(); i++)
{
for(unsigned int j=0; j<DistanceTable[i].size(); j++)
{
if(DistanceTable[i][j]<IntervalMax && DistanceTable[i][j]>=IntervalMin)
Frequency++;
}
}
return Frequency;
}
double GetMeanDistance(std::vector<double> Distance, std::vector<double> Frequency)
{
double MeanDistance=0, TotalFrequency=0;
for(unsigned int i=0; i<Distance.size(); i++)
{
MeanDistance+=Distance[i]*Frequency[i];
TotalFrequency+=Frequency[i];
}
MeanDistance/=TotalFrequency;
return MeanDistance;
}
std::vector<std::vector<double> > GetResultTableFrequency(std::vector<std::vector<double> > Table,int TotalNumberOfFibers,int number_of_entries,double step)
{
double Bounds[2];
GetBounds(Table,Bounds);
if(step==-1)
step=(Bounds[1]-Bounds[0])/number_of_entries;
std::cout<<Bounds[0]<<" "<<Bounds[1]<<" "<<number_of_entries<<" "<<step<<std::endl;
double IntervalMin = Bounds[0], IntervalMax = Bounds[0] + step;
std::vector<double> FrequencyVector;
std::vector<double> DistanceVector;
while(IntervalMin<=Bounds[1])
{
int Frequency = GetFrequency(Table, IntervalMin, IntervalMax);
DistanceVector.push_back(IntervalMin);
FrequencyVector.push_back(Frequency);
IntervalMin += step;
IntervalMax += step;
}
double Dist25=-1, Dist50=-1, Dist75=-1, Dist90=-1, Dist95=-1;
double CumulatedFrequency=0;
for(unsigned int i=0; i<DistanceVector.size(); i++)
{
//StatFile<<DistanceVector[i]<<","<<FrequencyVector[i]<<std::endl;
CumulatedFrequency+=FrequencyVector[i];
//std::cout<<"cumulated frequency"<<CumulatedFrequency<<"TotalNumberOfFibers"<<TotalNumberOfFibers<<std::endl;
if(CumulatedFrequency>=TotalNumberOfFibers*0.25 && Dist25==-1)
{
Dist25=DistanceVector[i];
}
if(CumulatedFrequency>=TotalNumberOfFibers*0.5 && Dist50==-1)
{
Dist50=DistanceVector[i];
}
if(CumulatedFrequency>=TotalNumberOfFibers*0.75 && Dist75==-1)
{
Dist75=DistanceVector[i];
}
if(CumulatedFrequency>=TotalNumberOfFibers*0.9 && Dist90==-1)
{
Dist90=DistanceVector[i];
}
if(CumulatedFrequency>=TotalNumberOfFibers*0.95 && Dist95==-1)
{
Dist95=DistanceVector[i];
}
}
std::vector<std::vector<double> > ResultDistanceFrequency;
std::vector<double> DistanceFrequency;
DistanceFrequency.push_back(Dist25);
DistanceFrequency.push_back(Dist50);
DistanceFrequency.push_back(Dist75);
DistanceFrequency.push_back(Dist90);
DistanceFrequency.push_back(Dist95);
DistanceFrequency.push_back(Bounds[0]);
DistanceFrequency.push_back(Bounds[1]);
ResultDistanceFrequency.push_back(DistanceFrequency);
ResultDistanceFrequency.push_back(DistanceVector);
ResultDistanceFrequency.push_back(FrequencyVector);
return ResultDistanceFrequency;
}
int main(int argc, char* argv[])
{
PARSE_ARGS;
int Number_of_entries=number_of_entries;
double Step=step;
std::vector<vtkSmartPointer<vtkPolyData> > FiberTracts;
std::vector<std::string> Filenames;
std::cout<<"Reading VTK data..."<<std::endl;
Filenames.push_back(vtk_input1);
Filenames.push_back(vtk_input2);
for(int i=0; i<2; i++)
{
if(Filenames[i].rfind(".vtk") != std::string::npos)
{
vtkSmartPointer<vtkPolyDataReader> reader = vtkSmartPointer<vtkPolyDataReader>::New();
reader->SetFileName(Filenames[i].c_str());
FiberTracts.push_back(reader->GetOutput());
reader->Update();
}
else if(Filenames[i].rfind(".vtp") != std::string::npos)
{
vtkSmartPointer<vtkXMLPolyDataReader> reader = vtkSmartPointer<vtkXMLPolyDataReader>::New();
reader->SetFileName(Filenames[i].c_str());
FiberTracts.push_back(reader->GetOutput());
reader->Update();
}
else
{
std::cout<<"Wrong filename : "<<Filenames[i]<<" Check file format and location."<<std::endl;
return 0;
}
}
std::cout<<Filenames[0]<<" "<<FiberTracts[0]->GetNumberOfCells()<<" fibers, "<<FiberTracts[0]->GetPoints()->GetNumberOfPoints()<<" points."<<std::endl;
std::cout<<Filenames[1]<<" "<<FiberTracts[1]->GetNumberOfCells()<<" fibers, "<<FiberTracts[1]->GetPoints()->GetNumberOfPoints()<<" points."<<std::endl;
std::cout<<"VTK Files read successfuly."<<std::endl<<std::endl;
std::cout<<"interpolation"<<std::endl<<std::endl;
vtkSmartPointer<vtkPolyData> Source = vtkSmartPointer<vtkPolyData>::New();
Source=FiberTracts[0];
vtkSmartPointer<vtkPolyData> Target= vtkSmartPointer<vtkPolyData>::New();
Target=FiberTracts[1];
vtkPoints* SourcePoints = Source->GetPoints();
vtkPoints* TargetPoints = Target->GetPoints();
std::cout<<"points "<<SourcePoints->GetNumberOfPoints()<<std::endl;
std::cout<<"points "<<TargetPoints->GetNumberOfPoints()<<std::endl;
//new vtk with spline interpolation
vtkSmartPointer<vtkPolyData> SourceInterpolated = vtkSmartPointer<vtkPolyData>::New();
vtkSmartPointer<vtkPolyData> TargetInterpolated = vtkSmartPointer<vtkPolyData>::New();
typedef itk::Vector<double, 3> VectorType;
vtkIdType nbpts=0, *pts=0;
VectorType v1, v2;
////for each fiber of vtk file Source////
vtkSmartPointer <vtkCellArray> cells = vtkSmartPointer <vtkCellArray>::New();
int countID=0;
vtkPoints* polypoints = vtkPoints::New();
while(Source->GetLines()->GetNextCell(nbpts, pts))
{
//store points of the current fiber in points
vtkSmartPointer<vtkPoints> points = vtkSmartPointer<vtkPoints>::New();
vtkIdType ind=0;double coords[3];
for(int p=0; p<nbpts; p++)
{
ind=pts[p];
SourcePoints->GetPoint( ind, coords);
points->InsertNextPoint(coords);
}
//spline interpolation
int numberOfInputPoints = points->GetNumberOfPoints();
vtkCardinalSpline* aSplineX;
vtkCardinalSpline* aSplineY;
vtkCardinalSpline* aSplineZ;
aSplineX = vtkCardinalSpline::New();
aSplineY = vtkCardinalSpline::New();
aSplineZ = vtkCardinalSpline::New();
aSplineX->ClosedOff();
aSplineY->ClosedOff();
aSplineZ->ClosedOff();
/////creation of splines/////
for (int i=0; i<numberOfInputPoints; i++)
{
double x = points->GetPoint(i)[0];
double y = points->GetPoint(i)[1];
double z = points->GetPoint(i)[2];
aSplineX->AddPoint(i, x);
aSplineY->AddPoint(i, y);
aSplineZ->AddPoint(i, z);
}
double tRange[2];
aSplineX->GetParametricRange ( tRange);
int compteur2=0;
////evaluation of new points then store it in polypoints////
for( double t = 0 ; t <= tRange[1]; t += stepInterpolate )
{
polypoints->InsertNextPoint(aSplineX->Evaluate(t),aSplineY->Evaluate(t),aSplineZ->Evaluate(t));
//compteur2 gives us the number of new points of the current fiber
compteur2++;
}
//creation of polylines
vtkSmartPointer<vtkPolyLine> polyline = vtkSmartPointer<vtkPolyLine>::New();
polyline->GetPointIds()->SetNumberOfIds(compteur2);
//countID gives us the total number of points cumulated
countID=polypoints->GetNumberOfPoints();
for (int i= 0; i<compteur2 ;i++)
{ //SETID(0->number of points in the current fiber, (total points cumulated-points in the current fiber)->total points cumulated)
polyline->GetPointIds()->SetId(i,i+(countID-compteur2));
}
cells->InsertNextCell(polyline);
aSplineX->Delete();
aSplineY->Delete();
aSplineZ->Delete();
}
SourceInterpolated->SetPoints(polypoints);
SourceInterpolated->SetLines(cells);
polypoints->Delete();
std::cout<<"end of the first interpolation"<<std::endl<<std::endl;
vtkIdType nbpts2=0, *pts2=0;
vtkSmartPointer <vtkCellArray> cells2 = vtkSmartPointer <vtkCellArray>::New();
int countID2=0;
vtkPoints* polypoints2 = vtkPoints::New();
while(Target->GetLines()->GetNextCell(nbpts2, pts2))
{
//std::cout<<"step2"<<std::endl;
vtkSmartPointer<vtkPoints> points2 = vtkSmartPointer<vtkPoints>::New();
vtkIdType ind2=0;double coords2[3];
for(int p2=0; p2<nbpts2; p2++)
{
ind2=pts2[p2];
TargetPoints->GetPoint( ind2, coords2);
points2->InsertNextPoint(coords2);
}
//spline interpolation
int numberOfInputPoints2 = points2->GetNumberOfPoints();
vtkCardinalSpline* aSpline2X;
vtkCardinalSpline* aSpline2Y;
vtkCardinalSpline* aSpline2Z;
aSpline2X = vtkCardinalSpline::New();
aSpline2Y = vtkCardinalSpline::New();
aSpline2Z = vtkCardinalSpline::New();
aSpline2X->ClosedOff();
aSpline2Y->ClosedOff();
aSpline2Z->ClosedOff();
/////creation of splines/////
for (int i=0; i<numberOfInputPoints2; i++)
{
//std::cout<<"step6"<<std::endl;
double x2 = points2->GetPoint(i)[0];
double y2 = points2->GetPoint(i)[1];
double z2 = points2->GetPoint(i)[2];
aSpline2X->AddPoint(i, x2);
aSpline2Y->AddPoint(i, y2);
aSpline2Z->AddPoint(i, z2);
}
double tRange2[2];
aSpline2X->GetParametricRange ( tRange2);
int compteur=0;
////evaluation of new points then store it in polypoints2////
for( double t2 = 0 ; t2 <= tRange2[1]; t2 += stepInterpolate )
{
polypoints2->InsertNextPoint(aSpline2X->Evaluate(t2),aSpline2Y->Evaluate(t2),aSpline2Z->Evaluate(t2));
compteur++;
}
vtkSmartPointer<vtkPolyLine> polyline2 = vtkSmartPointer<vtkPolyLine>::New();
polyline2->GetPointIds()->SetNumberOfIds(compteur);
countID2=polypoints2->GetNumberOfPoints();
for (int i=0; i<compteur;i++)
{
polyline2->GetPointIds()->SetId(i,i+(countID2-compteur));
}
cells2->InsertNextCell(polyline2);
aSpline2X->Delete();
aSpline2Y->Delete();
aSpline2Z->Delete();
//end
}
TargetInterpolated->SetPoints(polypoints2);
TargetInterpolated->SetLines(cells2);
polypoints2->Delete();
std::cout<<"end of the second interpolation"<<std::endl<<std::endl;
std::cout<<"Calculating..."<<std::endl;
std::vector<std::vector<double> > DistanceTable;
DistanceTable.push_back(FillDistanceTable(SourceInterpolated,TargetInterpolated));
DistanceTable.push_back(FillDistanceTable(TargetInterpolated,SourceInterpolated));
std::vector<std::vector<double> > TangentTable;
TangentTable.push_back(FillTangentTable(SourceInterpolated,TargetInterpolated,stepInterpolate));
TangentTable.push_back(FillTangentTable(TargetInterpolated,SourceInterpolated,stepInterpolate));
std::vector<std::vector<double> > CurveTable;
CurveTable.push_back(FillCurvatureTable(SourceInterpolated,TargetInterpolated,stepInterpolate));
CurveTable.push_back(FillCurvatureTable(TargetInterpolated,SourceInterpolated,stepInterpolate));
int TotalNumberOfFibers=SourceInterpolated->GetPoints()->GetNumberOfPoints()+TargetInterpolated->GetPoints()->GetNumberOfPoints();
std::ofstream StatFile(output_stat_file.c_str(), std::ios::out);
std::cout<<"number total points"<<TotalNumberOfFibers<<std::endl;
if(StatFile)
{
StatFile<<"Filename,Number of fibers,Number of points"<<std::endl;
StatFile<<Filenames[0]<<","<<SourceInterpolated->GetNumberOfCells()<<","<<SourceInterpolated->GetPoints()->GetNumberOfPoints()<<std::endl;
StatFile<<Filenames[1]<<","<<TargetInterpolated->GetNumberOfCells()<<","<<TargetInterpolated->GetPoints()->GetNumberOfPoints()<<std::endl<<std::endl;
std::vector<std::vector<double> > DistanceTableFrequency=GetResultTableFrequency(DistanceTable,TotalNumberOfFibers,Number_of_entries,Step);
std::cout<<"frequency tangent metric"<<std::endl;
std::vector<std::vector<double> > TangentTableFrequency=GetResultTableFrequency(TangentTable,TotalNumberOfFibers,Number_of_entries,Step);
std::cout<<"frequency curve metric"<<std::endl;
std::vector<std::vector<double> > CurveTableFrequency=GetResultTableFrequency(CurveTable,TotalNumberOfFibers,Number_of_entries,Step);
StatFile<<"Distance,Frequency closest points"<<std::endl;
std::vector<double> FrequencyVector1=DistanceTableFrequency[2];
std::vector<double> DistanceVector1=DistanceTableFrequency[1];
for(unsigned int i=0; i<DistanceVector1.size(); i++)
{
StatFile<<DistanceVector1[i]<<","<<FrequencyVector1[i]<<std::endl;
}
StatFile<<std::endl;
StatFile<<"Distance,Frequency of tangent metric"<<std::endl;
std::vector<double> FrequencyVector2=TangentTableFrequency[2];
std::vector<double> DistanceVector2=TangentTableFrequency[1];
for(unsigned int i=0; i<DistanceVector2.size(); i++)
{
StatFile<<DistanceVector2[i]<<","<<FrequencyVector2[i]<<std::endl;
}
StatFile<<std::endl;
StatFile<<"Distance,Frequency of curve metric"<<std::endl;
std::vector<double> FrequencyVector3=CurveTableFrequency[2];
std::vector<double> DistanceVector3=CurveTableFrequency[1];
for(unsigned int i=0; i<DistanceVector3.size(); i++)
{
StatFile<<DistanceVector3[i]<<","<<FrequencyVector3[i]<<std::endl;
}
StatFile<<std::endl;
StatFile<<"Distance Frequency Percentage,Distance"<<std::endl;
StatFile<<"25%,"<<DistanceTableFrequency[0][0]<<std::endl;
StatFile<<"50%,"<<DistanceTableFrequency[0][1]<<std::endl;
StatFile<<"75%,"<<DistanceTableFrequency[0][2]<<std::endl;
StatFile<<"90%,"<<DistanceTableFrequency[0][3]<<std::endl;
StatFile<<"95%,"<<DistanceTableFrequency[0][4]<<std::endl;
StatFile<<std::endl;
StatFile<<"Tangent metric Frequency Percentage,Distance"<<std::endl;
StatFile<<"25%,"<<TangentTableFrequency[0][0]<<std::endl;
StatFile<<"50%,"<<TangentTableFrequency[0][1]<<std::endl;
StatFile<<"75%,"<<TangentTableFrequency[0][2]<<std::endl;
StatFile<<"90%,"<<TangentTableFrequency[0][3]<<std::endl;
StatFile<<"95%,"<<TangentTableFrequency[0][4]<<std::endl;
StatFile<<std::endl;
StatFile<<"Curvature metric Frequency Percentage,Distance"<<std::endl;
StatFile<<"25%,"<<CurveTableFrequency[0][0]<<std::endl;
StatFile<<"50%,"<<CurveTableFrequency[0][1]<<std::endl;
StatFile<<"75%,"<<CurveTableFrequency[0][2]<<std::endl;
StatFile<<"90%,"<<CurveTableFrequency[0][3]<<std::endl;
StatFile<<"95%,"<<CurveTableFrequency[0][4]<<std::endl;
StatFile<<std::endl;
for(unsigned int i=0; i<methods.size(); i++)
{
if(methods[i] == "Overlap")
{ if( ReferenceScalarVolume == "")
{
std::cerr << "A reference volume has to be specified" << std::endl;
return EXIT_FAILURE;
}
std::vector<double> OverlapTable;
OverlapTable=FillOverlapTable(FiberTracts[0],FiberTracts[1],ReferenceScalarVolume,voxelLabel);
StatFile<<"Total volumetric overlap, "<<OverlapTable[0]<<std::endl;
StatFile<<"Union volumetric overlap (Jaccard coefficient), "<<OverlapTable[1]<<std::endl;
StatFile<<"Mean volumetric overlap (Dice coefficient), "<<OverlapTable[2]<<std::endl;
StatFile<<"Volume similarity, "<<OverlapTable[3]<<std::endl;
StatFile<<"False negative error, "<<OverlapTable[4]<<std::endl;
StatFile<<"False positive error, "<<OverlapTable[5]<<std::endl;
StatFile<<"Probabilistic overlap (POV), "<<OverlapTable[6]<<std::endl;
}
if(methods[i] == "Hausdorff")
{
std::cout<<" Hausdorff..."<<std::endl;
StatFile<<"Distance: 100%,"<<DistanceTableFrequency[0][6]<<std::endl;
StatFile<<"Tangent metric: 100%,"<<TangentTableFrequency[0][6]<<std::endl;
StatFile<<"Curve metric: 100%,"<<CurveTableFrequency[0][6]<<std::endl;
std::cout<<" End of Hausdorff."<<std::endl;
}
if(methods[i] == "Mean")
{
std::cout<<" Mean..."<<std::endl;
StatFile<<"Distance Mean,"<<GetMeanDistance(DistanceVector1,FrequencyVector1)<<std::endl;
StatFile<<"Tangent metric Mean,"<<GetMeanDistance(DistanceVector2,FrequencyVector2)<<std::endl;
StatFile<<"Curve metric Mean,"<<GetMeanDistance(DistanceVector3,FrequencyVector3)<<std::endl;
std::cout<<" End of Mean."<<std::endl;
}
else if(methods[i] == "None")
{
std::cout<<"Ignoring Mean and Hausdorff methods"<<std::endl;
}
/*else
{
std::cout<<"Wrong method or syntax for argument, none option is selected : "<<methods[i]<<std::endl;
std::cout<<"Ignoring argument."<<std::endl;
}*/
}
StatFile.close();
}
else
std::cout<<"ERROR: Unable to save output stat file."<<std::endl;
std::cout<<"Calculation complete."<<std::endl;
return 0;
}