diff --git a/.github/workflows/python.yml b/.github/workflows/ubuntu.yaml similarity index 74% rename from .github/workflows/python.yml rename to .github/workflows/ubuntu.yaml index 01f8294f3..1d20c9b8c 100644 --- a/.github/workflows/python.yml +++ b/.github/workflows/ubuntu.yaml @@ -14,7 +14,7 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. -name: Tests +name: Tests (Ubuntu) on: push: @@ -41,33 +41,34 @@ jobs: strategy: fail-fast: false matrix: - os: [ubuntu-latest, macos-latest, windows-latest] - python-version: ["3.8", "3.9", "3.10", "3.11", "3.12"] + os: [ubuntu-latest] + # python-version: ["3.8", "3.9", "3.10", "3.11", "3.12"] + # torch-version: ["1.11.0", "1.12.1", "1.13.1", "2.0.1", "2.1.2", "2.2.2", "2.3.1"] + python-version: ["3.8", "3.9", "3.10", "3.11"] torch-version: ["1.11.0", "1.12.1", "1.13.1", "2.0.1", "2.1.2", "2.2.2"] exclude: + # Check latest versions here: https://download.pytorch.org/whl/torch/ + # # PyTorch now fully supports Python=<3.11 # see: https://github.com/pytorch/pytorch/issues/86566 # - # PyTorch does not support Python 3.12 (all platforms) + # PyTorch does now support Python 3.12 (Linux) for 2.2.0 and newer # see: https://github.com/pytorch/pytorch/issues/110436 - - os: ubuntu-latest - python-version: "3.12" - - os: macos-latest - python-version: "3.12" - - os: windows-latest - python-version: "3.12" + - python-version: "3.12" + torch-version: "1.11.0" + - python-version: "3.12" + torch-version: "1.12.1" + - python-version: "3.12" + torch-version: "1.13.1" + - python-version: "3.12" + torch-version: "2.0.1" + - python-version: "3.12" + torch-version: "2.1.2" # PyTorch<1.13.0 does only support Python=<3.10 - python-version: "3.11" torch-version: "1.11.0" - python-version: "3.11" torch-version: "1.12.1" - # On macOS and Windows, 1.13.x is also not supported for Python>=3.10 - - os: macos-latest - python-version: "3.11" - torch-version: "1.13.1" - - os: windows-latest - python-version: "3.11" - torch-version: "1.13.1" runs-on: ${{ matrix.os }} @@ -80,7 +81,7 @@ jobs: uses: actions/checkout@v3 - name: Set up Python ${{ matrix.python-version }} - uses: actions/setup-python@v4 + uses: actions/setup-python@v5 with: python-version: ${{ matrix.python-version }} @@ -106,3 +107,5 @@ jobs: matrix.os == 'ubuntu-latest' with: files: ./coverage.xml # optional + token: ${{ secrets.CODECOV_TOKEN }} # required + verbose: true # optional (default = false) diff --git a/README.md b/README.md index 3bd75bd71..b742676b3 100644 --- a/README.md +++ b/README.md @@ -31,9 +31,9 @@ pre-commit.ci Status - + + Coverage +
diff --git a/docs/requirements.txt b/docs/requirements.txt index e8048d2a1..45a7764ec 100644 --- a/docs/requirements.txt +++ b/docs/requirements.txt @@ -1,3 +1,14 @@ +numpy<2 +pydantic>=2.0.0 +scipy +tad-dftd3>=0.3.0 +tad-dftd4>=0.2.0 +tad-libcint>=0.1.0 +tad-mctc>=0.2.0 +tad-multicharge +tomli +tomli-w +torch>=1.11.0,<=2.2.2 sphinx sphinx-book-theme sphinx-copybutton diff --git a/examples/profiling/batch.py b/examples/profiling/batch-vs-seq-aconfl.py similarity index 100% rename from examples/profiling/batch.py rename to examples/profiling/batch-vs-seq-aconfl.py diff --git a/examples/batch-vs-seq.py b/examples/profiling/batch-vs-seq-nicotine.py similarity index 100% rename from examples/batch-vs-seq.py rename to examples/profiling/batch-vs-seq-nicotine.py diff --git a/pyproject.toml b/pyproject.toml index 8f38d6542..acfa4080c 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -44,12 +44,13 @@ plugins = ["covdefaults"] source = ["./src"] omit = [ "./src/dxtb/_src/exlibs/xitorch/*", + "./src/dxtb/_src/exlibs/scipy/*", "./src/dxtb/_src/typing.py", "./src/dxtb/components/*", ] [tool.coverage.report] -fail_under = 80 +fail_under = 75 [tool.isort] diff --git a/src/dxtb/__version__.py b/src/dxtb/__version__.py index 46f2e018d..54fb8e144 100644 --- a/src/dxtb/__version__.py +++ b/src/dxtb/__version__.py @@ -22,5 +22,5 @@ __all__ = ["__version__", "__tversion__"] -__version__ = "0.0.1" +__version__ = "0.0.0" """Version of ``dxtb`` in semantic versioning.""" diff --git a/src/dxtb/_src/calculators/types/analytical.py b/src/dxtb/_src/calculators/types/analytical.py index 150568956..93844d962 100644 --- a/src/dxtb/_src/calculators/types/analytical.py +++ b/src/dxtb/_src/calculators/types/analytical.py @@ -28,6 +28,7 @@ from dxtb import OutputHandler from dxtb import integrals as ints +from dxtb import labels from dxtb._src import ncoord, scf from dxtb._src.components.interactions.container import Charges, Potential from dxtb._src.components.interactions.field import efield as efield @@ -326,7 +327,7 @@ def _forces_analytical( self.integrals.overlap.to_pt(write_overlap) # dipole integral - if self.opts.ints.level >= ints.levels.INTLEVEL_DIPOLE: + if self.opts.ints.level >= labels.INTLEVEL_DIPOLE: OutputHandler.write_stdout_nf(" - Dipole ... ", v=3) timer.start("Dipole Integral", parent_uid="Integrals") intmats.dipole = self.integrals.build_dipole(positions) @@ -339,7 +340,7 @@ def _forces_analytical( self.integrals.dipole.to_pt(write_dipole) # quadrupole integral - if self.opts.ints.level >= ints.levels.INTLEVEL_QUADRUPOLE: + if self.opts.ints.level >= labels.INTLEVEL_QUADRUPOLE: OutputHandler.write_stdout_nf(" - Quadrupole ... ", v=3) timer.start("Quadrupole Integral", parent_uid="Integrals") intmats.quadrupole = self.integrals.build_quadrupole(positions) @@ -358,7 +359,7 @@ def _forces_analytical( # To avoid unnecessary data transfer, the core Hamiltonian should # be last. Internally, the overlap integral is only transfered back # to GPU when all multipole integrals are calculated. - if self.opts.ints.level >= ints.levels.INTLEVEL_HCORE: + if self.opts.ints.level >= labels.INTLEVEL_HCORE: OutputHandler.write_stdout_nf(" - Core Hamiltonian ... ", v=3) timer.start("Core Hamiltonian", parent_uid="Integrals") intmats.hcore = self.integrals.build_hcore(positions) diff --git a/src/dxtb/_src/calculators/types/base.py b/src/dxtb/_src/calculators/types/base.py index d4b0d829f..984e87822 100644 --- a/src/dxtb/_src/calculators/types/base.py +++ b/src/dxtb/_src/calculators/types/base.py @@ -32,6 +32,7 @@ class and implement the :meth:`calculate` method and the corresponding methods from dxtb import IndexHelper, OutputHandler from dxtb import integrals as ints +from dxtb import labels from dxtb._src.calculators.properties.vibration import IRResult, RamanResult, VibResult from dxtb._src.components.classicals import ( Classical, @@ -565,25 +566,21 @@ def __init__( # figure out integral level from interactions if efield.LABEL_EFIELD in self.interactions.labels: - if self.opts.ints.level < ints.levels.INTLEVEL_DIPOLE: + if self.opts.ints.level < labels.INTLEVEL_DIPOLE: OutputHandler.warn( "Setting integral level to DIPOLE " - f"({ints.levels.INTLEVEL_DIPOLE}) due to electric field " + f"({labels.INTLEVEL_DIPOLE}) due to electric field " "interaction." ) - self.opts.ints.level = max( - ints.levels.INTLEVEL_DIPOLE, self.opts.ints.level - ) + self.opts.ints.level = max(labels.INTLEVEL_DIPOLE, self.opts.ints.level) if efield_grad.LABEL_EFIELD_GRAD in self.interactions.labels: - if self.opts.ints.level < ints.levels.INTLEVEL_DIPOLE: + if self.opts.ints.level < labels.INTLEVEL_DIPOLE: OutputHandler.warn( "Setting integral level to QUADRUPOLE " - f"{ints.levels.INTLEVEL_DIPOLE} due to electric field " + f"{labels.INTLEVEL_DIPOLE} due to electric field " "gradient interaction." ) - self.opts.ints.level = max( - ints.levels.INTLEVEL_QUADRUPOLE, self.opts.ints.level - ) + self.opts.ints.level = max(labels.INTLEVEL_QUADRUPOLE, self.opts.ints.level) # setup integral driver = self.opts.ints.driver @@ -591,14 +588,14 @@ def __init__( numbers, par, self.ihelp, driver=driver, intlevel=self.opts.ints.level, **dd ) - if self.opts.ints.level >= ints.levels.INTLEVEL_OVERLAP: + if self.opts.ints.level >= labels.INTLEVEL_OVERLAP: self.integrals.hcore = ints.types.HCore(numbers, par, self.ihelp, **dd) self.integrals.overlap = ints.types.Overlap(driver=driver, **dd) - if self.opts.ints.level >= ints.levels.INTLEVEL_DIPOLE: + if self.opts.ints.level >= labels.INTLEVEL_DIPOLE: self.integrals.dipole = ints.types.Dipole(driver=driver, **dd) - if self.opts.ints.level >= ints.levels.INTLEVEL_QUADRUPOLE: + if self.opts.ints.level >= labels.INTLEVEL_QUADRUPOLE: self.integrals.quadrupole = ints.types.Quadrupole(driver=driver, **dd) OutputHandler.write_stdout("done\n", v=4) diff --git a/src/dxtb/_src/calculators/types/energy.py b/src/dxtb/_src/calculators/types/energy.py index 8e476aeb7..c1f0f84e7 100644 --- a/src/dxtb/_src/calculators/types/energy.py +++ b/src/dxtb/_src/calculators/types/energy.py @@ -31,6 +31,7 @@ from dxtb import OutputHandler from dxtb import integrals as ints +from dxtb import labels from dxtb._src import scf from dxtb._src.constants import defaults from dxtb._src.integral.container import IntegralMatrices @@ -171,7 +172,7 @@ def singlepoint( self.integrals.overlap.to_pt(write_overlap) # dipole integral - if self.opts.ints.level >= ints.levels.INTLEVEL_DIPOLE: + if self.opts.ints.level >= labels.INTLEVEL_DIPOLE: OutputHandler.write_stdout_nf(" - Dipole ... ", v=3) timer.start("Dipole Integral", parent_uid="Integrals") intmats.dipole = self.integrals.build_dipole(positions) @@ -184,7 +185,7 @@ def singlepoint( self.integrals.dipole.to_pt(write_dipole) # quadrupole integral - if self.opts.ints.level >= ints.levels.INTLEVEL_QUADRUPOLE: + if self.opts.ints.level >= labels.INTLEVEL_QUADRUPOLE: OutputHandler.write_stdout_nf(" - Quadrupole ... ", v=3) timer.start("Quadrupole Integral", parent_uid="Integrals") intmats.quadrupole = self.integrals.build_quadrupole(positions) @@ -203,7 +204,7 @@ def singlepoint( # To avoid unnecessary data transfer, the core Hamiltonian should # be last. Internally, the overlap integral is only transfered back # to GPU when all multipole integrals are calculated. - if self.opts.ints.level >= ints.levels.INTLEVEL_HCORE: + if self.opts.ints.level >= labels.INTLEVEL_HCORE: OutputHandler.write_stdout_nf(" - Core Hamiltonian ... ", v=3) timer.start("Core Hamiltonian", parent_uid="Integrals") intmats.hcore = self.integrals.build_hcore(positions) diff --git a/src/dxtb/_src/constants/labels/integrals.py b/src/dxtb/_src/constants/labels/integrals.py index 301e6c6af..ae5c3f8d8 100644 --- a/src/dxtb/_src/constants/labels/integrals.py +++ b/src/dxtb/_src/constants/labels/integrals.py @@ -21,7 +21,26 @@ All labels related to integrals and their computation. """ -# integral driver +__all__ = [ + "INTDRIVER_LIBCINT", + "INTDRIVER_LIBCINT_STRS", + "INTDRIVER_AUTOGRAD", + "INTDRIVER_AUTOGRAD_STRS", + "INTDRIVER_ANALYTICAL", + "INTDRIVER_ANALYTICAL_STRS", + "INTDRIVER_LEGACY", + "INTDRIVER_LEGACY_STRS", + "INTDRIVER_MAP", + # + "INTLEVEL_NONE", + "INTLEVEL_OVERLAP", + "INTLEVEL_HCORE", + "INTLEVEL_DIPOLE", + "INTLEVEL_QUADRUPOLE", +] + +# integral drivers + INTDRIVER_LIBCINT = 0 """Integer code for LIBCINT driver.""" @@ -57,8 +76,11 @@ INTLEVEL_OVERLAP = 1 """Overlap integrals.""" -INTLEVEL_DIPOLE = 2 +INTLEVEL_HCORE = 2 +"""Core Hamiltonian integrals.""" + +INTLEVEL_DIPOLE = 3 """Dipole integrals.""" -INTLEVEL_QUADRUPOLE = 3 +INTLEVEL_QUADRUPOLE = 4 """Quadrupole integrals.""" diff --git a/src/dxtb/_src/exlibs/libcint/__init__.py b/src/dxtb/_src/exlibs/libcint/__init__.py index 59f5cd5c5..8593387d5 100644 --- a/src/dxtb/_src/exlibs/libcint/__init__.py +++ b/src/dxtb/_src/exlibs/libcint/__init__.py @@ -23,7 +23,7 @@ try: from tad_libcint.basis import AtomCGTOBasis, CGTOBasis - from tad_libcint.interface.intor import int1e, overlap + from tad_libcint.interface.integrals import int1e, overlap from tad_libcint.interface.wrapper import LibcintWrapper except ImportError as e: raise ImportError( diff --git a/src/dxtb/_src/integral/container.py b/src/dxtb/_src/integral/container.py index 22c701c96..fde186218 100644 --- a/src/dxtb/_src/integral/container.py +++ b/src/dxtb/_src/integral/container.py @@ -27,12 +27,11 @@ import torch -from dxtb import IndexHelper +from dxtb import IndexHelper, labels from dxtb._src.constants import defaults, labels from dxtb._src.param import Param from dxtb._src.typing import Any, Tensor -from . import levels from .base import IntDriver, IntegralContainer from .types import Dipole, HCore, Overlap, Quadrupole @@ -216,7 +215,7 @@ def build_overlap(self, positions: Tensor, **kwargs: Any) -> Tensor: # move integral to the correct device... if self.force_cpu_for_libcint is True: # ... but only if no other multipole integrals are required - if self._intlevel <= levels.INTLEVEL_HCORE: + if self._intlevel <= labels.INTLEVEL_HCORE: self.overlap.integral = self.overlap.integral.to(device=self.device) # FIXME: The matrix has to be moved explicitly, because when @@ -301,7 +300,7 @@ def build_dipole(self, positions: Tensor, shift: bool = True, **kwargs: Any): # move integral to the correct device, but only if no other multipole # integrals are required - if self.force_cpu_for_libcint and self._intlevel <= levels.INTLEVEL_DIPOLE: + if self.force_cpu_for_libcint and self._intlevel <= labels.INTLEVEL_DIPOLE: self.dipole.integral = self.dipole.integral.to(device=self.device) self.dipole.integral.matrix = self.dipole.integral.matrix.to( device=self.device @@ -389,7 +388,7 @@ def build_quadrupole( # move integral to the correct device, but only if no other multipole # integrals are required - if self.force_cpu_for_libcint and self._intlevel <= levels.INTLEVEL_QUADRUPOLE: + if self.force_cpu_for_libcint and self._intlevel <= labels.INTLEVEL_QUADRUPOLE: self.overlap.integral = self.overlap.integral.to(self.device) self.overlap.integral.matrix = self.overlap.integral.matrix.to(self.device) @@ -448,7 +447,7 @@ def checks(self) -> None: if name != "hcore": family_integral = cls.integral.family # type: ignore - family_driver = self.driver.family + family_driver = self.driver.family # type: ignore if family_integral != family_driver: raise RuntimeError( f"The '{cls.integral.label}' integral implementation " diff --git a/src/dxtb/_src/integral/levels.py b/src/dxtb/_src/integral/levels.py deleted file mode 100644 index ee8986a10..000000000 --- a/src/dxtb/_src/integral/levels.py +++ /dev/null @@ -1,45 +0,0 @@ -# This file is part of dxtb. -# -# SPDX-Identifier: Apache-2.0 -# Copyright (C) 2024 Grimme Group -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -""" -Integrals: Levels -================= - -Specifies the levels of integrals that should be computed. -""" - -__all__ = [ - "INTLEVEL_NONE", - "INTLEVEL_OVERLAP", - "INTLEVEL_HCORE", - "INTLEVEL_DIPOLE", - "INTLEVEL_QUADRUPOLE", -] - -INTLEVEL_NONE = 0 -"""No integrals.""" - -INTLEVEL_OVERLAP = 1 -"""Overlap integrals.""" - -INTLEVEL_HCORE = 2 -"""Core Hamiltonian integrals.""" - -INTLEVEL_DIPOLE = 3 -"""Dipole integrals.""" - -INTLEVEL_QUADRUPOLE = 4 -"""Quadrupole integrals.""" diff --git a/src/dxtb/_src/io/handler.py b/src/dxtb/_src/io/handler.py index 3e6b72877..fe0afe731 100644 --- a/src/dxtb/_src/io/handler.py +++ b/src/dxtb/_src/io/handler.py @@ -298,6 +298,10 @@ def dump_warnings(self) -> None: for msg, warning_type in self.warnings: self.console_logger.warning(f"[{warning_type.__name__}] {msg}") + def clear_warnings(self) -> None: + """Clear all warnings.""" + self.warnings = [] + def format_for_console( self, title: str, diff --git a/src/dxtb/integrals/__init__.py b/src/dxtb/integrals/__init__.py index 1d581c805..2bb712878 100644 --- a/src/dxtb/integrals/__init__.py +++ b/src/dxtb/integrals/__init__.py @@ -52,7 +52,6 @@ from typing import TYPE_CHECKING if TYPE_CHECKING: - from dxtb.integrals import levels as levels from dxtb.integrals import types as types from dxtb.integrals import wrappers as wrappers else: @@ -60,7 +59,7 @@ __getattr__, __dir__, __all__ = _lazy.attach_module( __name__, - ["levels", "types", "wrappers"], + ["types", "wrappers"], ) del _lazy diff --git a/src/dxtb/integrals/levels.py b/src/dxtb/integrals/levels.py deleted file mode 100644 index 2b02cea7e..000000000 --- a/src/dxtb/integrals/levels.py +++ /dev/null @@ -1,28 +0,0 @@ -# This file is part of dxtb. -# -# SPDX-Identifier: Apache-2.0 -# Copyright (C) 2024 Grimme Group -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -""" -Integrals: Levels -================= - -Specifies the levels of integrals that should be computed. -""" - -from dxtb._src.integral.levels import INTLEVEL_DIPOLE as INTLEVEL_DIPOLE -from dxtb._src.integral.levels import INTLEVEL_HCORE as INTLEVEL_HCORE -from dxtb._src.integral.levels import INTLEVEL_NONE as INTLEVEL_NONE -from dxtb._src.integral.levels import INTLEVEL_OVERLAP as INTLEVEL_OVERLAP -from dxtb._src.integral.levels import INTLEVEL_QUADRUPOLE as INTLEVEL_QUADRUPOLE diff --git a/test/test_a_memory_leak/test_higher_deriv.py b/test/test_a_memory_leak/test_higher_deriv.py index 464d705f8..732ddeecf 100644 --- a/test/test_a_memory_leak/test_higher_deriv.py +++ b/test/test_a_memory_leak/test_higher_deriv.py @@ -35,16 +35,13 @@ from ..conftest import DEVICE from ..utils import nth_derivative -from .util import has_memleak_tensor +from .util import garbage_collect, has_memleak_tensor -sample_list = ["H2O", "SiH4", "MB16_43_01"] +slist = ["H2O", "SiH4"] +slist_large = ["MB16_43_01"] -@pytest.mark.filterwarnings("ignore") -@pytest.mark.parametrize("dtype", [torch.float, torch.double]) -@pytest.mark.parametrize("name", sample_list) -@pytest.mark.parametrize("n", [1, 2, 3, 4]) -def test_single(dtype: torch.dtype, name: str, n: int) -> None: +def execute(name: str, dtype: torch.dtype, n: int) -> None: dd: DD = {"dtype": dtype, "device": DEVICE} def fcn(): @@ -67,9 +64,33 @@ def fcn(): _ = nth_derivative(energy, positions, n) + del numbers + del positions + del ihelp + del rep + del cache + del energy + # run garbage collector to avoid leaks across other tests - gc.collect() + garbage_collect() leak = has_memleak_tensor(fcn) - gc.collect() + garbage_collect() assert not leak, "Memory leak detected" + + +@pytest.mark.filterwarnings("ignore::UserWarning") +@pytest.mark.parametrize("dtype", [torch.float, torch.double]) +@pytest.mark.parametrize("name", slist) +@pytest.mark.parametrize("n", [1, 2, 3, 4]) +def test_single(dtype: torch.dtype, name: str, n: int) -> None: + execute(name, dtype, n) + + +@pytest.mark.large +@pytest.mark.filterwarnings("ignore::UserWarning") +@pytest.mark.parametrize("dtype", [torch.float, torch.double]) +@pytest.mark.parametrize("name", slist_large) +@pytest.mark.parametrize("n", [1, 2, 3, 4]) +def test_large(dtype: torch.dtype, name: str, n: int) -> None: + execute(name, dtype, n) diff --git a/test/test_a_memory_leak/test_repulsion.py b/test/test_a_memory_leak/test_repulsion.py index 148ec9f6c..69858e40b 100644 --- a/test/test_a_memory_leak/test_repulsion.py +++ b/test/test_a_memory_leak/test_repulsion.py @@ -35,15 +35,13 @@ from dxtb._src.typing import DD from ..conftest import DEVICE -from .util import has_memleak_tensor +from .util import garbage_collect, has_memleak_tensor -sample_list = ["H2O", "SiH4", "MB16_43_01"] +slist = ["H2O", "SiH4"] +slist_large = ["MB16_43_01"] -@pytest.mark.filterwarnings("ignore") -@pytest.mark.parametrize("dtype", [torch.float, torch.double]) -@pytest.mark.parametrize("name", sample_list) -def test_single(dtype: torch.dtype, name: str) -> None: +def execute(name: str, dtype: torch.dtype) -> None: dd: DD = {"dtype": dtype, "device": DEVICE} def fcn(): @@ -90,9 +88,34 @@ def fcn(): # known reference cycle for create_graph=True energy.backward() + del numbers + del positions + del ihelp + del rep + del cache + del energy + del arep + del zeff + del kexp + # run garbage collector to avoid leaks across other tests - gc.collect() + garbage_collect() leak = has_memleak_tensor(fcn) - gc.collect() + garbage_collect() assert not leak, "Memory leak detected" + + +@pytest.mark.filterwarnings("ignore::UserWarning") +@pytest.mark.parametrize("dtype", [torch.float, torch.double]) +@pytest.mark.parametrize("name", slist) +def test_single(dtype: torch.dtype, name: str) -> None: + execute(name, dtype) + + +@pytest.mark.large +@pytest.mark.filterwarnings("ignore::UserWarning") +@pytest.mark.parametrize("dtype", [torch.float, torch.double]) +@pytest.mark.parametrize("name", slist_large) +def test_large(dtype: torch.dtype, name: str) -> None: + execute(name, dtype) diff --git a/test/test_a_memory_leak/test_scf.py b/test/test_a_memory_leak/test_scf.py index caa59abd9..5eef810d6 100644 --- a/test/test_a_memory_leak/test_scf.py +++ b/test/test_a_memory_leak/test_scf.py @@ -33,7 +33,7 @@ from dxtb._src.typing import DD from ..conftest import DEVICE -from .util import has_memleak_tensor +from .util import garbage_collect, has_memleak_tensor opts = {"verbosity": 0, "maxiter": 50, "exclude": ["rep", "disp", "hal"]} repeats = 5 @@ -49,7 +49,7 @@ def test_xitorch(dtype: torch.dtype, run_gc: bool, create_graph: bool) -> None: dd: DD = {"dtype": dtype, "device": DEVICE} def fcn(): - sample = samples["SiH4"] + sample = samples["LiH"] numbers = sample["numbers"].to(DEVICE) positions = sample["positions"].clone().to(**dd) charges = torch.tensor(0.0, **dd) @@ -69,10 +69,17 @@ def fcn(): if create_graph is True: energy.backward() + del numbers + del positions + del charges + del calc + del result + del energy + # run garbage collector to avoid leaks across other tests - gc.collect() + garbage_collect() leak = has_memleak_tensor(fcn, gccollect=run_gc) - gc.collect() + garbage_collect() assert not leak, "Memory leak detected" @@ -105,9 +112,9 @@ def fcn(): energy.backward() # run garbage collector to avoid leaks across other tests - gc.collect() + garbage_collect() leak = has_memleak_tensor(fcn, gccollect=run_gc) - gc.collect() + garbage_collect() assert not leak, "Memory leak detected" @@ -144,9 +151,16 @@ def fcn(): if create_graph is True: energy.backward() + del numbers + del positions + del charges + del calc + del result + del energy + # run garbage collector to avoid leaks across other tests - gc.collect() + garbage_collect() leak = has_memleak_tensor(fcn, gccollect=run_gc) - gc.collect() + garbage_collect() assert not leak, "Memory leak detected" diff --git a/test/test_a_memory_leak/util.py b/test/test_a_memory_leak/util.py index e086b9052..a74afc12d 100644 --- a/test/test_a_memory_leak/util.py +++ b/test/test_a_memory_leak/util.py @@ -24,12 +24,29 @@ import gc +import torch + from dxtb.__version__ import __tversion__ -from dxtb._src.typing import Callable, Literal, Tensor, overload +from dxtb._src.typing import Callable, Generator, Literal, Tensor, overload -def _tensors_from_gc() -> list: - return [obj for obj in gc.get_objects() if isinstance(obj, Tensor)] +def garbage_collect() -> None: + """ + Run the garbage collector. + """ + gc.collect() + if torch.cuda.is_available(): + torch.cuda.empty_cache() + + +def _tensors_from_gc() -> Generator[Tensor, None, None]: + # return [obj for obj in gc.get_objects() if isinstance(obj, Tensor)] + for obj in gc.get_objects(): + try: + if isinstance(obj, Tensor): + yield obj + except Exception: # nosec B112 pylint: disable=broad-exception-caught + continue @overload @@ -57,12 +74,12 @@ def _get_tensor_memory( """ # obtaining all the tensor objects from the garbage collector - tensor_objs = _tensors_from_gc() # iterate each tensor objects uniquely and calculate the total storage visited_data = set() total_mem = 0.0 - for tensor in tensor_objs: + count = 0 + for tensor in _tensors_from_gc(): if tensor.is_sparse: continue @@ -72,12 +89,7 @@ def _get_tensor_memory( storage = tensor.untyped_storage() # check if it has been visited - if __tversion__ < (2, 0, 0): - storage = tensor.storage() - else: - storage = tensor.untyped_storage() - - data_ptr = storage.data_ptr() # type: ignore + data_ptr = storage.data_ptr() if data_ptr in visited_data: continue visited_data.add(data_ptr) @@ -88,9 +100,10 @@ def _get_tensor_memory( mem = numel * elmt_size / (1024 * 1024) # in MiB total_mem += mem + count += 1 if return_number_tensors is True: - return total_mem, len(tensor_objs) + return total_mem, count return total_mem diff --git a/test/test_basis/test_export.py b/test/test_basis/test_export.py index 68144a90d..93f04d888 100644 --- a/test/test_basis/test_export.py +++ b/test/test_basis/test_export.py @@ -63,4 +63,17 @@ def test_export( with open(p, encoding="utf-8") as f: content = f.read() + def round_numbers(data): + rounded_data = [] + for item in data: + try: + rounded_item = round(float(item), 10) + rounded_data.append(rounded_item) + except ValueError: + rounded_data.append(item) + return rounded_data + + content = round_numbers(content.split()) + txt = round_numbers(txt.split()) + assert content == txt diff --git a/test/test_cli/test_entrypoint.py b/test/test_cli/test_entrypoint.py index 6111051f6..b21da554b 100644 --- a/test/test_cli/test_entrypoint.py +++ b/test/test_cli/test_entrypoint.py @@ -20,7 +20,7 @@ import pytest -from dxtb import __version__ +from dxtb import OutputHandler, __version__ from dxtb._src.cli import console_entry_point from ..utils import coordfile @@ -57,6 +57,9 @@ def test_no_file( def test_entrypoint( caplog: pytest.LogCaptureFixture, capsys: pytest.CaptureFixture ) -> None: + # avoid pollution from previous tests + OutputHandler.clear_warnings() + ret = console_entry_point([str(coordfile), "--verbosity", "0"]) assert ret == 0 diff --git a/test/test_dispersion/test_grad_param.py b/test/test_dispersion/test_grad_param.py index 224c0dc68..a9130306a 100644 --- a/test/test_dispersion/test_grad_param.py +++ b/test/test_dispersion/test_grad_param.py @@ -31,7 +31,8 @@ from ..conftest import DEVICE from .samples import samples -sample_list = ["LiH", "SiH4", "MB16_43_01", "PbH4-BiH3"] +slist = ["LiH", "SiH4"] +slist_large = ["MB16_43_01", "PbH4-BiH3"] tol = 1e-8 @@ -66,7 +67,7 @@ def func(*inputs: Tensor) -> Tensor: @pytest.mark.grad @pytest.mark.parametrize("dtype", [torch.double]) -@pytest.mark.parametrize("name", sample_list) +@pytest.mark.parametrize("name", slist) def test_gradcheck(dtype: torch.dtype, name: str) -> None: """ Check a single analytical gradient of parameters against numerical @@ -77,8 +78,21 @@ def test_gradcheck(dtype: torch.dtype, name: str) -> None: @pytest.mark.grad +@pytest.mark.large @pytest.mark.parametrize("dtype", [torch.double]) -@pytest.mark.parametrize("name", sample_list) +@pytest.mark.parametrize("name", slist_large) +def test_gradcheck_large(dtype: torch.dtype, name: str) -> None: + """ + Check a single analytical gradient of parameters against numerical + gradient from `torch.autograd.gradcheck`. + """ + func, diffvars = gradchecker(dtype, name) + assert dgradcheck(func, diffvars, atol=tol) + + +@pytest.mark.grad +@pytest.mark.parametrize("dtype", [torch.double]) +@pytest.mark.parametrize("name", slist) def test_gradgradcheck(dtype: torch.dtype, name: str) -> None: """ Check a single analytical gradient of parameters against numerical @@ -88,6 +102,19 @@ def test_gradgradcheck(dtype: torch.dtype, name: str) -> None: assert dgradgradcheck(func, diffvars, atol=tol) +@pytest.mark.grad +@pytest.mark.large +@pytest.mark.parametrize("dtype", [torch.double]) +@pytest.mark.parametrize("name", slist_large) +def test_gradgradcheck_large(dtype: torch.dtype, name: str) -> None: + """ + Check a single analytical gradient of parameters against numerical + gradient from `torch.autograd.gradgradcheck`. + """ + func, diffvars = gradchecker(dtype, name) + assert dgradgradcheck(func, diffvars, atol=tol) + + def gradchecker_batch(dtype: torch.dtype, name1: str, name2: str) -> tuple[ Callable[[Tensor, Tensor, Tensor, Tensor], Tensor], # autograd function tuple[Tensor, Tensor, Tensor, Tensor], # differentiable variables @@ -129,7 +156,7 @@ def func(*inputs: Tensor) -> Tensor: @pytest.mark.grad @pytest.mark.parametrize("dtype", [torch.double]) @pytest.mark.parametrize("name1", ["LiH"]) -@pytest.mark.parametrize("name2", sample_list) +@pytest.mark.parametrize("name2", slist) def test_gradcheck_batch(dtype: torch.dtype, name1: str, name2: str) -> None: """ Check a single analytical gradient of parameters against numerical @@ -139,10 +166,24 @@ def test_gradcheck_batch(dtype: torch.dtype, name1: str, name2: str) -> None: assert dgradcheck(func, diffvars, atol=tol) +@pytest.mark.grad +@pytest.mark.large +@pytest.mark.parametrize("dtype", [torch.double]) +@pytest.mark.parametrize("name1", ["LiH"]) +@pytest.mark.parametrize("name2", slist_large) +def test_gradcheck_batch_large(dtype: torch.dtype, name1: str, name2: str) -> None: + """ + Check a single analytical gradient of parameters against numerical + gradient from `torch.autograd.gradcheck`. + """ + func, diffvars = gradchecker_batch(dtype, name1, name2) + assert dgradcheck(func, diffvars, atol=tol) + + @pytest.mark.grad @pytest.mark.parametrize("dtype", [torch.double]) @pytest.mark.parametrize("name1", ["LiH"]) -@pytest.mark.parametrize("name2", sample_list) +@pytest.mark.parametrize("name2", slist) def test_gradgradcheck_batch(dtype: torch.dtype, name1: str, name2: str) -> None: """ Check a single analytical gradient of parameters against numerical @@ -150,3 +191,17 @@ def test_gradgradcheck_batch(dtype: torch.dtype, name1: str, name2: str) -> None """ func, diffvars = gradchecker_batch(dtype, name1, name2) assert dgradgradcheck(func, diffvars, atol=tol) + + +@pytest.mark.grad +@pytest.mark.large +@pytest.mark.parametrize("dtype", [torch.double]) +@pytest.mark.parametrize("name1", ["LiH"]) +@pytest.mark.parametrize("name2", slist_large) +def test_gradgradcheck_batch_large(dtype: torch.dtype, name1: str, name2: str) -> None: + """ + Check a single analytical gradient of parameters against numerical + gradient from `torch.autograd.gradgradcheck`. + """ + func, diffvars = gradchecker_batch(dtype, name1, name2) + assert dgradgradcheck(func, diffvars, atol=tol) diff --git a/test/test_dispersion/test_grad_pos.py b/test/test_dispersion/test_grad_pos.py index 185238a48..8d353dda1 100644 --- a/test/test_dispersion/test_grad_pos.py +++ b/test/test_dispersion/test_grad_pos.py @@ -32,7 +32,8 @@ from ..conftest import DEVICE from .samples import samples -sample_list = ["LiH", "SiH4", "MB16_43_01", "PbH4-BiH3"] +slist = ["LiH", "SiH4"] +slist_large = ["MB16_43_01", "PbH4-BiH3"] tol = 1e-8 @@ -63,7 +64,7 @@ def func(positions: Tensor) -> Tensor: @pytest.mark.grad @pytest.mark.parametrize("dtype", [torch.double]) -@pytest.mark.parametrize("name", sample_list) +@pytest.mark.parametrize("name", slist) def test_gradcheck(dtype: torch.dtype, name: str) -> None: """ Check a single analytical gradient of parameters against numerical @@ -74,8 +75,21 @@ def test_gradcheck(dtype: torch.dtype, name: str) -> None: @pytest.mark.grad +@pytest.mark.large @pytest.mark.parametrize("dtype", [torch.double]) -@pytest.mark.parametrize("name", sample_list) +@pytest.mark.parametrize("name", slist_large) +def test_gradcheck_large(dtype: torch.dtype, name: str) -> None: + """ + Check a single analytical gradient of parameters against numerical + gradient from `torch.autograd.gradcheck`. + """ + func, diffvars = gradchecker(dtype, name) + assert dgradcheck(func, diffvars, atol=tol) + + +@pytest.mark.grad +@pytest.mark.parametrize("dtype", [torch.double]) +@pytest.mark.parametrize("name", slist) def test_gradgradcheck(dtype: torch.dtype, name: str) -> None: """ Check a single analytical gradient of parameters against numerical @@ -85,6 +99,19 @@ def test_gradgradcheck(dtype: torch.dtype, name: str) -> None: assert dgradgradcheck(func, diffvars, atol=tol) +@pytest.mark.grad +@pytest.mark.large +@pytest.mark.parametrize("dtype", [torch.double]) +@pytest.mark.parametrize("name", slist_large) +def test_gradgradcheck_large(dtype: torch.dtype, name: str) -> None: + """ + Check a single analytical gradient of parameters against numerical + gradient from `torch.autograd.gradgradcheck`. + """ + func, diffvars = gradchecker(dtype, name) + assert dgradgradcheck(func, diffvars, atol=tol) + + def gradchecker_batch(dtype: torch.dtype, name1: str, name2: str) -> tuple[ Callable[[Tensor], Tensor], # autograd function Tensor, # differentiable variables @@ -122,7 +149,7 @@ def func(positions: Tensor) -> Tensor: @pytest.mark.grad @pytest.mark.parametrize("dtype", [torch.double]) @pytest.mark.parametrize("name1", ["LiH"]) -@pytest.mark.parametrize("name2", sample_list) +@pytest.mark.parametrize("name2", slist) def test_gradcheck_batch(dtype: torch.dtype, name1: str, name2: str) -> None: """ Check a single analytical gradient of parameters against numerical @@ -132,10 +159,24 @@ def test_gradcheck_batch(dtype: torch.dtype, name1: str, name2: str) -> None: assert dgradcheck(func, diffvars, atol=tol) +@pytest.mark.grad +@pytest.mark.large +@pytest.mark.parametrize("dtype", [torch.double]) +@pytest.mark.parametrize("name1", ["LiH"]) +@pytest.mark.parametrize("name2", slist_large) +def test_gradcheck_batch_large(dtype: torch.dtype, name1: str, name2: str) -> None: + """ + Check a single analytical gradient of parameters against numerical + gradient from `torch.autograd.gradcheck`. + """ + func, diffvars = gradchecker_batch(dtype, name1, name2) + assert dgradcheck(func, diffvars, atol=tol) + + @pytest.mark.grad @pytest.mark.parametrize("dtype", [torch.double]) @pytest.mark.parametrize("name1", ["LiH"]) -@pytest.mark.parametrize("name2", sample_list) +@pytest.mark.parametrize("name2", slist) def test_gradgradcheck_batch(dtype: torch.dtype, name1: str, name2: str) -> None: """ Check a single analytical gradient of parameters against numerical @@ -147,7 +188,20 @@ def test_gradgradcheck_batch(dtype: torch.dtype, name1: str, name2: str) -> None @pytest.mark.grad @pytest.mark.parametrize("dtype", [torch.double]) -@pytest.mark.parametrize("name", sample_list) +@pytest.mark.parametrize("name1", ["LiH"]) +@pytest.mark.parametrize("name2", slist_large) +def test_gradgradcheck_batch_large(dtype: torch.dtype, name1: str, name2: str) -> None: + """ + Check a single analytical gradient of parameters against numerical + gradient from `torch.autograd.gradgradcheck`. + """ + func, diffvars = gradchecker_batch(dtype, name1, name2) + assert dgradgradcheck(func, diffvars, atol=tol) + + +@pytest.mark.grad +@pytest.mark.parametrize("dtype", [torch.double]) +@pytest.mark.parametrize("name", slist) def test_autograd(dtype: torch.dtype, name: str) -> None: dd: DD = {"dtype": dtype, "device": DEVICE} @@ -173,7 +227,7 @@ def test_autograd(dtype: torch.dtype, name: str) -> None: @pytest.mark.grad @pytest.mark.parametrize("dtype", [torch.double]) @pytest.mark.parametrize("name1", ["LiH"]) -@pytest.mark.parametrize("name2", sample_list) +@pytest.mark.parametrize("name2", slist) def test_autograd_batch(dtype: torch.dtype, name1: str, name2: str) -> None: dd: DD = {"dtype": dtype, "device": DEVICE} @@ -215,7 +269,7 @@ def test_autograd_batch(dtype: torch.dtype, name1: str, name2: str) -> None: @pytest.mark.grad @pytest.mark.parametrize("dtype", [torch.double]) -@pytest.mark.parametrize("name", sample_list) +@pytest.mark.parametrize("name", slist) def test_backward(dtype: torch.dtype, name: str) -> None: """Compare with reference values from tblite.""" dd: DD = {"dtype": dtype, "device": DEVICE} @@ -251,7 +305,7 @@ def test_backward(dtype: torch.dtype, name: str) -> None: @pytest.mark.grad @pytest.mark.parametrize("dtype", [torch.double]) @pytest.mark.parametrize("name1", ["LiH"]) -@pytest.mark.parametrize("name2", sample_list) +@pytest.mark.parametrize("name2", slist) def test_backward_batch(dtype: torch.dtype, name1: str, name2: str) -> None: """Compare with reference values from tblite.""" dd: DD = {"dtype": dtype, "device": DEVICE} diff --git a/test/test_external/test_field.py b/test/test_external/test_field.py index 023059b1f..fc688348c 100644 --- a/test/test_external/test_field.py +++ b/test/test_external/test_field.py @@ -112,8 +112,8 @@ def test_batch(dtype: torch.dtype, name1: str, name2: str, scf_mode: str) -> Non @pytest.mark.parametrize("dtype", [torch.float, torch.double]) -@pytest.mark.parametrize("name1", sample_list) -@pytest.mark.parametrize("name2", sample_list) +@pytest.mark.parametrize("name1", ["LiH"]) +@pytest.mark.parametrize("name2", ["LiH"]) @pytest.mark.parametrize("name3", sample_list) @pytest.mark.parametrize( "scf_mode", [labels.SCF_MODE_IMPLICIT_NON_PURE, labels.SCF_MODE_FULL] diff --git a/test/test_integrals/test_libcint.py b/test/test_integrals/test_libcint.py index 6991d3538..6f0c24ad6 100644 --- a/test/test_integrals/test_libcint.py +++ b/test/test_integrals/test_libcint.py @@ -27,6 +27,7 @@ from dxtb import GFN1_XTB as par from dxtb import IndexHelper from dxtb import integrals as ints +from dxtb import labels from dxtb._src.exlibs import libcint from dxtb._src.integral.driver.libcint import IntDriverLibcint from dxtb._src.typing import DD @@ -52,7 +53,7 @@ def test_single(dtype: torch.dtype, name: str, force_cpu_for_libcint: bool): par, ihelp, force_cpu_for_libcint=force_cpu_for_libcint, - intlevel=ints.levels.INTLEVEL_QUADRUPOLE, + intlevel=labels.INTLEVEL_QUADRUPOLE, **dd, ) @@ -118,7 +119,7 @@ def test_batch( numbers, par, ihelp, - intlevel=ints.levels.INTLEVEL_QUADRUPOLE, + intlevel=labels.INTLEVEL_QUADRUPOLE, force_cpu_for_libcint=force_cpu_for_libcint, **dd, ) diff --git a/test/test_libcint/test_overlap.py b/test/test_libcint/test_overlap.py index 5b63f88d4..630a7fa3c 100644 --- a/test/test_libcint/test_overlap.py +++ b/test/test_libcint/test_overlap.py @@ -48,7 +48,8 @@ from ..conftest import DEVICE from .samples import samples -sample_list = ["H2", "LiH", "Li2", "H2O", "S", "SiH4", "MB16_43_01", "C60"] +slist = ["H2", "LiH", "Li2", "H2O", "S", "SiH4"] +slist_large = ["MB16_43_01", "C60"] def snorm(overlap: Tensor) -> Tensor: @@ -82,8 +83,20 @@ def extract_blocks(x: Tensor, block_sizes: list[int] | Tensor) -> list[Tensor]: @pytest.mark.skipif(pyscf is False, reason="PySCF not installed") @pytest.mark.parametrize("dtype", [torch.float, torch.double]) -@pytest.mark.parametrize("name", sample_list) +@pytest.mark.parametrize("name", slist) def test_single(dtype: torch.dtype, name: str) -> None: + run_single(dtype, name) + + +@pytest.mark.large +@pytest.mark.skipif(pyscf is False, reason="PySCF not installed") +@pytest.mark.parametrize("dtype", [torch.float, torch.double]) +@pytest.mark.parametrize("name", slist_large) +def test_large(dtype: torch.dtype, name: str) -> None: + run_single(dtype, name) + + +def run_single(dtype: torch.dtype, name: str) -> None: dd: DD = {"dtype": dtype, "device": DEVICE} tol = sqrt(torch.finfo(dtype).eps) * 1e-2 @@ -120,13 +133,30 @@ def test_single(dtype: torch.dtype, name: str) -> None: @pytest.mark.skipif(pyscf is False, reason="PySCF not installed") @pytest.mark.parametrize("dtype", [torch.float, torch.double]) -@pytest.mark.parametrize("name1", sample_list) -@pytest.mark.parametrize("name2", sample_list) +@pytest.mark.parametrize("name1", ["LiH"]) +@pytest.mark.parametrize("name2", slist) def test_batch(dtype: torch.dtype, name1: str, name2: str) -> None: """ Batched overlap using non-batched setup, i.e., one huge matrix is calculated that is only populated on the diagonal. """ + run_batch(dtype, name1, name2) + + +@pytest.mark.large +@pytest.mark.skipif(pyscf is False, reason="PySCF not installed") +@pytest.mark.parametrize("dtype", [torch.float, torch.double]) +@pytest.mark.parametrize("name1", ["LiH"]) +@pytest.mark.parametrize("name2", slist_large) +def test_large_batch(dtype: torch.dtype, name1: str, name2: str) -> None: + """ + Batched overlap using non-batched setup, i.e., one huge matrix is + calculated that is only populated on the diagonal. + """ + run_batch(dtype, name1, name2) + + +def run_batch(dtype: torch.dtype, name1: str, name2: str) -> None: tol = sqrt(torch.finfo(dtype).eps) * 1e-2 dd: DD = {"dtype": dtype, "device": DEVICE} @@ -190,8 +220,20 @@ def test_batch(dtype: torch.dtype, name1: str, name2: str) -> None: @pytest.mark.skipif(pyscf is False, reason="PySCF not installed") @pytest.mark.parametrize("dtype", [torch.float, torch.double]) -@pytest.mark.parametrize("name", sample_list) +@pytest.mark.parametrize("name", slist) def test_grad(dtype: torch.dtype, name: str) -> None: + run_grad(dtype, name) + + +@pytest.mark.large +@pytest.mark.skipif(pyscf is False, reason="PySCF not installed") +@pytest.mark.parametrize("dtype", [torch.float, torch.double]) +@pytest.mark.parametrize("name", slist_large) +def test_large_grad(dtype: torch.dtype, name: str) -> None: + run_grad(dtype, name) + + +def run_grad(dtype: torch.dtype, name: str) -> None: dd: DD = {"dtype": dtype, "device": DEVICE} tol = sqrt(torch.finfo(dtype).eps) * 1e-2 diff --git a/test/test_multipole/test_dipole_integral.py b/test/test_multipole/test_dipole_integral.py index 1b9674900..5fac21674 100644 --- a/test/test_multipole/test_dipole_integral.py +++ b/test/test_multipole/test_dipole_integral.py @@ -45,7 +45,8 @@ from ..conftest import DEVICE from .samples import samples -sample_list = ["H2", "LiH", "Li2", "H2O", "S", "SiH4", "MB16_43_01", "C60"] +slist = ["H2", "LiH", "Li2", "H2O", "S"] +slist_large = ["SiH4", "MB16_43_01", "C60"] def snorm(overlap: Tensor) -> Tensor: @@ -54,8 +55,20 @@ def snorm(overlap: Tensor) -> Tensor: @pytest.mark.skipif(M is False, reason="PySCF not installed") @pytest.mark.parametrize("dtype", [torch.float, torch.double]) -@pytest.mark.parametrize("name", sample_list) +@pytest.mark.parametrize("name", slist) def test_single(dtype: torch.dtype, name: str) -> None: + run_single(dtype, name) + + +@pytest.mark.large +@pytest.mark.skipif(M is False, reason="PySCF not installed") +@pytest.mark.parametrize("dtype", [torch.float, torch.double]) +@pytest.mark.parametrize("name", slist_large) +def test_large(dtype: torch.dtype, name: str) -> None: + run_single(dtype, name) + + +def run_single(dtype: torch.dtype, name: str) -> None: dd: DD = {"dtype": dtype, "device": DEVICE} tol = sqrt(torch.finfo(dtype).eps) * 1e-2 diff --git a/test/test_overlap/test_grad_pos.py b/test/test_overlap/test_grad_pos.py index 4b38f7def..83c97e852 100644 --- a/test/test_overlap/test_grad_pos.py +++ b/test/test_overlap/test_grad_pos.py @@ -34,7 +34,8 @@ from ..conftest import DEVICE from .samples import samples -sample_list = ["H2", "HHe", "LiH", "Li2", "S2", "H2O", "SiH4"] +slist = ["LiH", "H2O"] +slist_large = ["H2", "HHe", "Li2", "S2", "SiH4"] tol = 1e-7 @@ -65,7 +66,7 @@ def func(pos: Tensor) -> Tensor: @pytest.mark.grad @pytest.mark.parametrize("dtype", [torch.double]) -@pytest.mark.parametrize("name", sample_list) +@pytest.mark.parametrize("name", slist) def test_grad(dtype: torch.dtype, name: str) -> None: """ Check a single analytical gradient of positions against numerical @@ -77,7 +78,19 @@ def test_grad(dtype: torch.dtype, name: str) -> None: @pytest.mark.grad @pytest.mark.parametrize("dtype", [torch.double]) -@pytest.mark.parametrize("name", sample_list) +@pytest.mark.parametrize("name", slist_large) +def test_grad_large(dtype: torch.dtype, name: str) -> None: + """ + Check a single analytical gradient of positions against numerical + gradient from `torch.autograd.gradcheck`. + """ + func, diffvars = gradchecker(dtype, name) + assert dgradcheck(func, diffvars, atol=tol) + + +@pytest.mark.grad +@pytest.mark.parametrize("dtype", [torch.double]) +@pytest.mark.parametrize("name", slist) def test_gradgrad(dtype: torch.dtype, name: str) -> None: """ Check a single analytical gradient of positions against numerical @@ -87,6 +100,18 @@ def test_gradgrad(dtype: torch.dtype, name: str) -> None: assert dgradgradcheck(func, diffvars, atol=tol) +@pytest.mark.grad +@pytest.mark.parametrize("dtype", [torch.double]) +@pytest.mark.parametrize("name", slist_large) +def test_gradgrad_large(dtype: torch.dtype, name: str) -> None: + """ + Check a single analytical gradient of positions against numerical + gradient from `torch.autograd.gradgradcheck`. + """ + func, diffvars = gradchecker(dtype, name) + assert dgradgradcheck(func, diffvars, atol=tol) + + def gradchecker_batch( dtype: torch.dtype, name1: str, name2: str ) -> tuple[Callable[[Tensor], Tensor], Tensor]: @@ -128,8 +153,8 @@ def func(pos: Tensor) -> Tensor: @pytest.mark.grad @pytest.mark.filterwarnings("ignore") # torch.meshgrid from batch.deflate @pytest.mark.parametrize("dtype", [torch.double]) -@pytest.mark.parametrize("name1", ["H2"]) -@pytest.mark.parametrize("name2", sample_list) +@pytest.mark.parametrize("name1", ["LiH"]) +@pytest.mark.parametrize("name2", slist) def test_grad_batch(dtype: torch.dtype, name1: str, name2: str) -> None: """ Check a single analytical gradient of positions against numerical @@ -143,7 +168,21 @@ def test_grad_batch(dtype: torch.dtype, name1: str, name2: str) -> None: @pytest.mark.filterwarnings("ignore") # torch.meshgrid from batch.deflate @pytest.mark.parametrize("dtype", [torch.double]) @pytest.mark.parametrize("name1", ["H2"]) -@pytest.mark.parametrize("name2", sample_list) +@pytest.mark.parametrize("name2", slist_large) +def test_grad_batch_large(dtype: torch.dtype, name1: str, name2: str) -> None: + """ + Check a single analytical gradient of positions against numerical + gradient from `torch.autograd.gradcheck`. + """ + func, diffvars = gradchecker_batch(dtype, name1, name2) + assert dgradcheck(func, diffvars, atol=tol) + + +@pytest.mark.grad +@pytest.mark.filterwarnings("ignore") # torch.meshgrid from batch.deflate +@pytest.mark.parametrize("dtype", [torch.double]) +@pytest.mark.parametrize("name1", ["LiH"]) +@pytest.mark.parametrize("name2", slist) def test_gradgrad_batch(dtype: torch.dtype, name1: str, name2: str) -> None: """ Check a single analytical gradient of positions against numerical @@ -151,3 +190,17 @@ def test_gradgrad_batch(dtype: torch.dtype, name1: str, name2: str) -> None: """ func, diffvars = gradchecker_batch(dtype, name1, name2) assert dgradgradcheck(func, diffvars, atol=tol) + + +@pytest.mark.grad +@pytest.mark.filterwarnings("ignore") # torch.meshgrid from batch.deflate +@pytest.mark.parametrize("dtype", [torch.double]) +@pytest.mark.parametrize("name1", ["H2"]) +@pytest.mark.parametrize("name2", slist_large) +def test_gradgrad_batch_large(dtype: torch.dtype, name1: str, name2: str) -> None: + """ + Check a single analytical gradient of positions against numerical + gradient from `torch.autograd.gradgradcheck`. + """ + func, diffvars = gradchecker_batch(dtype, name1, name2) + assert dgradgradcheck(func, diffvars, atol=tol) diff --git a/test/test_properties/test_dipole.py b/test/test_properties/test_dipole.py index da73eaea0..c1c79945f 100644 --- a/test/test_properties/test_dipole.py +++ b/test/test_properties/test_dipole.py @@ -35,8 +35,9 @@ from ..conftest import DEVICE from .samples import samples -slist = ["H", "H2", "LiH", "HHe", "H2O", "CH4", "SiH4", "PbH4-BiH3"] -slist_large = ["MB16_43_01", "LYS_xao", "C60"] +slist = ["LiH"] +slist_more = ["H", "HHe", "H2", "H2O", "CH4", "SiH4"] +slist_large = ["PbH4-BiH3", "MB16_43_01", "LYS_xao", "C60"] opts = { "int_level": INTLEVEL_DIPOLE, @@ -150,6 +151,16 @@ def test_single(dtype: torch.dtype, name: str) -> None: single(name, "dipole", field_vector, dd=dd, atol=1e-3) +@pytest.mark.large +@pytest.mark.parametrize("dtype", [torch.double]) +@pytest.mark.parametrize("name", slist_more) +def test_single_more(dtype: torch.dtype, name: str) -> None: + dd: DD = {"dtype": dtype, "device": DEVICE} + + field_vector = torch.tensor([0.0, 0.0, 0.0], **dd) # * VAA2AU + single(name, "dipole", field_vector, dd=dd, atol=1e-3) + + @pytest.mark.large @pytest.mark.parametrize("dtype", [torch.double]) @pytest.mark.parametrize("name", slist_large) diff --git a/test/test_properties/test_dipole_deriv.py b/test/test_properties/test_dipole_deriv.py index 8536df130..731b8a210 100644 --- a/test/test_properties/test_dipole_deriv.py +++ b/test/test_properties/test_dipole_deriv.py @@ -35,8 +35,9 @@ from ..conftest import DEVICE from .samples import samples -slist = ["H", "LiH", "HHe", "H2O", "CH4", "PbH4-BiH3"] -slist_large = ["MB16_43_01"] +slist = ["LiH"] +slist_more = ["H", "HHe", "H2O", "CH4", "PbH4-BiH3", "MB16_43_01"] +slist_large = ["PbH4-BiH3", "MB16_43_01"] opts = { "int_level": INTLEVEL_DIPOLE, @@ -176,6 +177,16 @@ def test_single(dtype: torch.dtype, name: str) -> None: single(name, field_vector, dd=dd) +@pytest.mark.large +@pytest.mark.parametrize("dtype", [torch.double]) +@pytest.mark.parametrize("name", slist_more) +def test_single_more(dtype: torch.dtype, name: str) -> None: + dd: DD = {"dtype": dtype, "device": DEVICE} + + field_vector = torch.tensor([0.0, 0.0, 0.0], **dd) + single(name, field_vector, dd=dd) + + @pytest.mark.large @pytest.mark.parametrize("dtype", [torch.double]) @pytest.mark.parametrize("name", slist_large) diff --git a/test/test_properties/test_forces.py b/test/test_properties/test_forces.py index f9807451a..67e249091 100644 --- a/test/test_properties/test_forces.py +++ b/test/test_properties/test_forces.py @@ -33,8 +33,8 @@ from ..conftest import DEVICE from .samples import samples -slist = ["H", "LiH", "HHe", "H2O", "CH4", "SiH4", "PbH4-BiH3"] -slist_large = ["MB16_43_01"] # "LYS_xao" +slist = ["H", "LiH", "H2O", "CH4", "SiH4"] +slist_large = ["HHe", "PbH4-BiH3", "MB16_43_01"] # "LYS_xao" opts = { "maxiter": 100, diff --git a/test/test_properties/test_hessian.py b/test/test_properties/test_hessian.py index 6be72445d..819072826 100644 --- a/test/test_properties/test_hessian.py +++ b/test/test_properties/test_hessian.py @@ -33,8 +33,10 @@ from ..conftest import DEVICE from .samples import samples -slist = ["H", "LiH", "HHe", "H2O", "CH4", "SiH4"] -slist_large = ["PbH4-BiH3"] # "MB16_43_01", "LYS_xao" +slist = ["LiH"] +slist_more = ["H", "HHe", "H2O", "CH4", "SiH4"] +slist_large = ["PbH4-BiH3"] +# "MB16_43_01", "LYS_xao" opts = { "maxiter": 100, @@ -192,6 +194,14 @@ def test_single(dtype: torch.dtype, name: str) -> None: single(name, dd=dd) +@pytest.mark.large +@pytest.mark.parametrize("dtype", [torch.double]) +@pytest.mark.parametrize("name", slist_more) +def test_single_more(dtype: torch.dtype, name: str) -> None: + dd: DD = {"dtype": dtype, "device": DEVICE} + single(name, dd=dd) + + @pytest.mark.large @pytest.mark.parametrize("dtype", [torch.double]) @pytest.mark.parametrize("name", slist_large) diff --git a/test/test_properties/test_hyperpol.py b/test/test_properties/test_hyperpol.py index fefb917a1..2e2b11195 100644 --- a/test/test_properties/test_hyperpol.py +++ b/test/test_properties/test_hyperpol.py @@ -35,8 +35,13 @@ from ..conftest import DEVICE from .samples import samples -slist = ["H", "LiH", "H2O", "CH4", "PbH4-BiH3"] -slist_large = ["MB16_43_01"] +slist = ["LiH"] +slist_more = [ + "H", + "H2O", + "CH4", +] +slist_large = ["PbH4-BiH3", "MB16_43_01"] opts = { "int_level": INTLEVEL_DIPOLE, @@ -175,6 +180,16 @@ def test_single(dtype: torch.dtype, name: str) -> None: single(name, field_vector, dd=dd) +@pytest.mark.large +@pytest.mark.parametrize("dtype", [torch.double]) +@pytest.mark.parametrize("name", slist_more) +def test_single_more(dtype: torch.dtype, name: str) -> None: + dd: DD = {"dtype": dtype, "device": DEVICE} + + field_vector = torch.tensor([0.0, 0.0, 0.0], **dd) + single(name, field_vector, dd=dd) + + @pytest.mark.large @pytest.mark.parametrize("dtype", [torch.double]) @pytest.mark.parametrize("name", slist_large) diff --git a/test/test_properties/test_ir.py b/test/test_properties/test_ir.py index 44dda425f..e7e706d68 100644 --- a/test/test_properties/test_ir.py +++ b/test/test_properties/test_ir.py @@ -35,8 +35,10 @@ from ..conftest import DEVICE from .samples import samples -slist = ["H", "LiH", "HHe", "H2O", "CH4", "SiH4", "PbH4-BiH3"] -slist_large = ["MB16_43_01"] # LYS_xao too large for testing +slist = ["LiH"] +slist_more = ["H", "HHe", "H2O", "CH4", "SiH4"] +slist_large = ["PbH4-BiH3", "MB16_43_01"] +# LYS_xao too large for testing opts = { "int_level": INTLEVEL_DIPOLE, @@ -152,6 +154,16 @@ def test_single(dtype: torch.dtype, name: str) -> None: single(name, field_vector, dd=dd) +@pytest.mark.large +@pytest.mark.parametrize("dtype", [torch.double]) +@pytest.mark.parametrize("name", slist_more) +def test_single_more(dtype: torch.dtype, name: str) -> None: + dd: DD = {"dtype": dtype, "device": DEVICE} + + field_vector = torch.tensor([0.0, 0.0, 0.0], **dd) + single(name, field_vector, dd=dd) + + @pytest.mark.large @pytest.mark.parametrize("dtype", [torch.double]) @pytest.mark.parametrize("name", slist_large) diff --git a/test/test_properties/test_pol.py b/test/test_properties/test_pol.py index f6bbc3693..32531991f 100644 --- a/test/test_properties/test_pol.py +++ b/test/test_properties/test_pol.py @@ -35,7 +35,8 @@ from ..conftest import DEVICE from .samples import samples -slist = ["H", "LiH", "HHe", "H2O", "CH4", "SiH4"] +slist = ["LiH"] +slist_more = ["H", "HHe", "H2O", "CH4", "SiH4"] slist_large = ["PbH4-BiH3", "MB16_43_01", "LYS_xao"] opts = { @@ -176,6 +177,16 @@ def test_single(dtype: torch.dtype, name: str) -> None: single(name, field_vector, dd=dd) +@pytest.mark.large +@pytest.mark.parametrize("dtype", [torch.double]) +@pytest.mark.parametrize("name", slist_more) +def test_single_more(dtype: torch.dtype, name: str) -> None: + dd: DD = {"dtype": dtype, "device": DEVICE} + + field_vector = torch.tensor([0.0, 0.0, 0.0], **dd) + single(name, field_vector, dd=dd) + + @pytest.mark.large @pytest.mark.parametrize("dtype", [torch.double]) @pytest.mark.parametrize("name", slist_large) diff --git a/test/test_properties/test_pol_deriv.py b/test/test_properties/test_pol_deriv.py index 7832e03e0..3a250f483 100644 --- a/test/test_properties/test_pol_deriv.py +++ b/test/test_properties/test_pol_deriv.py @@ -35,7 +35,8 @@ from ..conftest import DEVICE from .samples import samples -slist = ["H", "LiH", "HHe", "H2O", "CH4", "SiH4"] +slist = ["LiH"] +slist_more = ["H", "HHe", "H2O", "CH4", "SiH4", "LiH"] slist_large = ["PbH4-BiH3"] opts = { @@ -170,6 +171,16 @@ def test_single(dtype: torch.dtype, name: str) -> None: single(name, field_vector, dd=dd) +@pytest.mark.large +@pytest.mark.parametrize("dtype", [torch.double]) +@pytest.mark.parametrize("name", slist_more) +def test_single_more(dtype: torch.dtype, name: str) -> None: + dd: DD = {"dtype": dtype, "device": DEVICE} + + field_vector = torch.tensor([0.0, 0.0, 0.0], **dd) + single(name, field_vector, dd=dd) + + @pytest.mark.large @pytest.mark.parametrize("dtype", [torch.double]) @pytest.mark.parametrize("name", slist_large) diff --git a/test/test_properties/test_raman.py b/test/test_properties/test_raman.py index 5d237dc0c..0553afa36 100644 --- a/test/test_properties/test_raman.py +++ b/test/test_properties/test_raman.py @@ -35,8 +35,10 @@ from ..conftest import DEVICE from .samples import samples -slist = ["H", "LiH", "H2O", "SiH4"] -slist_large = ["PbH4-BiH3"] # MB16_43_01 and LYS_xao too large for testing +slist = ["LiH"] +slist_more = ["H", "HHe", "H2O", "SiH4"] +slist_large = ["PbH4-BiH3"] +# MB16_43_01 and LYS_xao too large for testing opts = { "int_level": INTLEVEL_DIPOLE, @@ -164,6 +166,16 @@ def test_single(dtype: torch.dtype, name: str) -> None: single(name, field_vector, dd=dd) +@pytest.mark.large +@pytest.mark.parametrize("dtype", [torch.double]) +@pytest.mark.parametrize("name", slist_more) +def test_single_more(dtype: torch.dtype, name: str) -> None: + dd: DD = {"dtype": dtype, "device": DEVICE} + + field_vector = torch.tensor([0.0, 0.0, 0.0], **dd) + single(name, field_vector, dd=dd) + + @pytest.mark.large @pytest.mark.parametrize("dtype", [torch.double]) @pytest.mark.parametrize("name", slist_large) diff --git a/test/test_properties/test_vibration.py b/test/test_properties/test_vibration.py index 75ddd676a..419c904b2 100644 --- a/test/test_properties/test_vibration.py +++ b/test/test_properties/test_vibration.py @@ -34,7 +34,8 @@ from ..conftest import DEVICE from .samples import samples -slist = ["H", "LiH", "HHe", "H2O"] +slist = ["LiH"] +slist_more = ["H", "H2O"] # FIXME: Larger systems fail for modes # slist = ["H", "LiH", "HHe", "H2O", "CH4", "SiH4", "PbH4-BiH3"] @@ -166,6 +167,14 @@ def test_single(dtype: torch.dtype, name: str) -> None: single(name, dd=dd) +@pytest.mark.large +@pytest.mark.parametrize("dtype", [torch.double]) +@pytest.mark.parametrize("name", slist_more) +def test_single_more(dtype: torch.dtype, name: str) -> None: + dd: DD = {"dtype": dtype, "device": DEVICE} + single(name, dd=dd) + + # TODO: Batched derivatives are not supported yet @pytest.mark.parametrize("dtype", [torch.double]) @pytest.mark.parametrize("name1", ["LiH"]) diff --git a/test/test_properties/test_vibration_ref.py b/test/test_properties/test_vibration_ref.py index ae18e94d7..bd8a96c00 100644 --- a/test/test_properties/test_vibration_ref.py +++ b/test/test_properties/test_vibration_ref.py @@ -34,8 +34,9 @@ from .samples import samples # FIXME: "HHe" is completely off -slist = ["H", "H2", "LiH", "H2O", "CH4", "SiH4"] -slist_large = ["LYS_xao"] +slist = ["LiH"] +slist_more = ["H", "H2", "H2O", "CH4", "SiH4"] +slist_large = ["PbH4-BiH3", "MB16_43_01", "LYS_xao"] opts = { "maxiter": 100, @@ -83,7 +84,16 @@ def test_single(dtype: torch.dtype, name: str) -> None: @pytest.mark.large @pytest.mark.parametrize("dtype", [torch.double]) -@pytest.mark.parametrize("name", ["PbH4-BiH3", "MB16_43_01", "LYS_xao"]) +@pytest.mark.parametrize("name", slist_more) +def test_single_more(dtype: torch.dtype, name: str) -> None: + dd: DD = {"dtype": dtype, "device": DEVICE} + atol, rtol = 10, 1e-3 + single(name, dd=dd, atol=atol, rtol=rtol) + + +@pytest.mark.large +@pytest.mark.parametrize("dtype", [torch.double]) +@pytest.mark.parametrize("name", slist_large) def test_single_large(dtype: torch.dtype, name: str) -> None: dd: DD = {"dtype": dtype, "device": DEVICE} atol, rtol = 10, 1e-3 diff --git a/test/test_scf/test_charged.py b/test/test_scf/test_charged.py index 2b822bfcf..abac618e9 100644 --- a/test/test_scf/test_charged.py +++ b/test/test_scf/test_charged.py @@ -87,8 +87,8 @@ def test_grad(dtype: torch.dtype, name: str): **{ "exclude": ["rep", "disp", "hal"], "maxiter": 50, - "f_atol": 1.0e-6, - "x_atol": 1.0e-6, + "f_atol": 1.0e-5, + "x_atol": 1.0e-5, }, ) calc = Calculator(numbers, par, opts=options, **dd) diff --git a/test/test_scf/test_full_tracking.py b/test/test_scf/test_full_tracking.py index 26447a161..a16e47533 100644 --- a/test/test_scf/test_full_tracking.py +++ b/test/test_scf/test_full_tracking.py @@ -30,11 +30,15 @@ from dxtb import GFN1_XTB as par from dxtb import Calculator from dxtb._src.constants import labels -from dxtb._src.typing import DD +from dxtb._src.typing import DD, Tensor from ..conftest import DEVICE from .samples import samples +slist = ["LiH", "SiH4"] +slist_more = ["H2", "H2O", "CH4"] +slist_large = ["PbH4-BiH3", "C6H5I-CH3SH", "MB16_43_01", "LYS_xao"] + opts = { "verbosity": 0, "maxiter": 300, @@ -85,7 +89,7 @@ def single( @pytest.mark.filterwarnings("ignore") @pytest.mark.parametrize("dtype", [torch.float, torch.double]) -@pytest.mark.parametrize("name", ["H2", "LiH", "H2O", "CH4", "SiH4"]) +@pytest.mark.parametrize("name", slist) @pytest.mark.parametrize("mixer", ["anderson", "simple"]) @pytest.mark.parametrize("intdriver", drivers) def test_single(dtype: torch.dtype, name: str, mixer: str, intdriver: int): @@ -93,9 +97,21 @@ def test_single(dtype: torch.dtype, name: str, mixer: str, intdriver: int): single(dtype, name, mixer, tol, intdriver=intdriver) +@pytest.mark.large +@pytest.mark.filterwarnings("ignore") +@pytest.mark.parametrize("dtype", [torch.float, torch.double]) +@pytest.mark.parametrize("name", slist_more) +@pytest.mark.parametrize("mixer", ["anderson", "simple"]) +@pytest.mark.parametrize("intdriver", drivers) +def test_single_more(dtype: torch.dtype, name: str, mixer: str, intdriver: int): + tol = sqrt(torch.finfo(dtype).eps) * 10 + single(dtype, name, mixer, tol, intdriver=intdriver) + + +@pytest.mark.large @pytest.mark.filterwarnings("ignore") @pytest.mark.parametrize("dtype", [torch.float, torch.double]) -@pytest.mark.parametrize("name", ["PbH4-BiH3", "C6H5I-CH3SH", "MB16_43_01", "LYS_xao"]) +@pytest.mark.parametrize("name", slist_large) @pytest.mark.parametrize("mixer", ["anderson", "simple"]) def test_single_medium(dtype: torch.dtype, name: str, mixer: str): """Test a few larger system.""" @@ -103,6 +119,7 @@ def test_single_medium(dtype: torch.dtype, name: str, mixer: str): single(dtype, name, mixer, tol) +@pytest.mark.large @pytest.mark.filterwarnings("ignore") @pytest.mark.parametrize("dtype", [torch.float, torch.double]) @pytest.mark.parametrize("name", ["S2", "LYS_xao_dist"]) @@ -175,7 +192,7 @@ def batched( @pytest.mark.filterwarnings("ignore") @pytest.mark.parametrize("dtype", [torch.float, torch.double]) -@pytest.mark.parametrize("name1", ["H2", "LiH"]) +@pytest.mark.parametrize("name1", ["LiH"]) @pytest.mark.parametrize("name2", ["LiH", "SiH4"]) @pytest.mark.parametrize("mixer", ["anderson", "simple"]) @pytest.mark.parametrize("intdriver", drivers) @@ -187,7 +204,7 @@ def test_batch( def batched_unconverged( - ref, + ref: Tensor, dtype: torch.dtype, name1: str, name2: str, diff --git a/test/test_scf/test_grad.py b/test/test_scf/test_grad.py index ebb08045c..4171cd311 100644 --- a/test/test_scf/test_grad.py +++ b/test/test_scf/test_grad.py @@ -50,11 +50,30 @@ @pytest.mark.grad @pytest.mark.filterwarnings("ignore") @pytest.mark.parametrize("dtype", [torch.float, torch.double]) -@pytest.mark.parametrize("name", ["LiH", "SiH4"]) +@pytest.mark.parametrize("name", ["LiH"]) @pytest.mark.parametrize("scp_mode", ["potential", "fock"]) @pytest.mark.parametrize("scf_mode", ["implicit", "nonpure", "full", "single-shot"]) def test_grad_backwards( name: str, dtype: torch.dtype, scf_mode: str, scp_mode: str +) -> None: + run_grad_backwards(name, dtype, scf_mode, scp_mode) + + +@pytest.mark.grad +@pytest.mark.large +@pytest.mark.filterwarnings("ignore") +@pytest.mark.parametrize("dtype", [torch.float, torch.double]) +@pytest.mark.parametrize("name", ["SiH4"]) +@pytest.mark.parametrize("scp_mode", ["potential", "fock"]) +@pytest.mark.parametrize("scf_mode", ["implicit", "nonpure", "full", "single-shot"]) +def test_grad_backwards_large( + name: str, dtype: torch.dtype, scf_mode: str, scp_mode: str +) -> None: + run_grad_backwards(name, dtype, scf_mode, scp_mode) + + +def run_grad_backwards( + name: str, dtype: torch.dtype, scf_mode: str, scp_mode: str ) -> None: tol = sqrt(torch.finfo(dtype).eps) * 10 dd: DD = {"device": DEVICE, "dtype": dtype} @@ -95,8 +114,17 @@ def test_grad_backwards( @pytest.mark.grad @pytest.mark.filterwarnings("ignore") @pytest.mark.parametrize("dtype", [torch.float, torch.double]) -@pytest.mark.parametrize("name", ["H2", "LiH", "H2O", "CH4", "SiH4"]) +@pytest.mark.parametrize("name", ["LiH"]) def test_grad_autograd(name: str, dtype: torch.dtype): + run_grad_autograd(name, dtype) + + +@pytest.mark.grad +@pytest.mark.large +@pytest.mark.filterwarnings("ignore") +@pytest.mark.parametrize("dtype", [torch.float, torch.double]) +@pytest.mark.parametrize("name", ["H2", "H2O", "CH4", "SiH4"]) +def run_grad_autograd(name: str, dtype: torch.dtype): tol = sqrt(torch.finfo(dtype).eps) * 10 dd: DD = {"device": DEVICE, "dtype": dtype} @@ -167,12 +195,27 @@ def test_grad_large(name: str, dtype: torch.dtype): @pytest.mark.grad -@pytest.mark.parametrize("name", ["LiH", "H2O", "SiH4", "LYS_xao"]) +@pytest.mark.parametrize("name", ["LiH"]) def test_param_grad_energy(name: str, dtype: torch.dtype = torch.float): """ Test autograd of SCF without gradient tracking vs. SCF with full gradient tracking. References obtained with full tracking and `torch.float`. """ + run_param_grad_energy(name, dtype) + + +@pytest.mark.grad +@pytest.mark.large +@pytest.mark.parametrize("name", ["H2O", "SiH4", "LYS_xao"]) +def test_param_grad_energy_large(name: str, dtype: torch.dtype = torch.float): + """ + Test autograd of SCF without gradient tracking vs. SCF with full gradient + tracking. References obtained with full tracking and `torch.float`. + """ + run_param_grad_energy(name, dtype) + + +def run_param_grad_energy(name: str, dtype: torch.dtype = torch.float): tol = sqrt(torch.finfo(dtype).eps) * 10 dd: DD = {"device": DEVICE, "dtype": dtype} diff --git a/test/test_scf/test_scf.py b/test/test_scf/test_scf.py index 931b5dc2f..9a9372eb4 100644 --- a/test/test_scf/test_scf.py +++ b/test/test_scf/test_scf.py @@ -100,11 +100,11 @@ def test_single_medium(dtype: torch.dtype, name: str, mixer: str): @pytest.mark.filterwarnings("ignore") -@pytest.mark.parametrize("dtype", [torch.float]) -@pytest.mark.parametrize("name", ["S2", "LYS_xao_dist"]) -def test_single_difficult(dtype: torch.dtype, name: str): +@pytest.mark.parametrize("dtype", [torch.float, torch.double]) +@pytest.mark.parametrize("name", ["S2"]) +def test_single_difficult_1(dtype: torch.dtype, name: str): """Test a few larger system (only float32 within tolerance).""" - tol = sqrt(torch.finfo(dtype).eps) * 10 + tol = 1e-2 dd: DD = {"device": DEVICE, "dtype": dtype} sample = samples[name] @@ -116,10 +116,40 @@ def test_single_difficult(dtype: torch.dtype, name: str): options = dict( opts, **{ - "f_atol": 1e-6, - "x_atol": 1e-6, + "f_atol": 1e-5 if dtype == torch.float else 1e-7, + "x_atol": 1e-5 if dtype == torch.float else 1e-7, "damp": 0.5, # simple mixing - "maxiter": 300, # simple mixing + "maxiter": 400, # simple mixing + }, + ) + calc = Calculator(numbers, par, opts=options, **dd) + + result = calc.singlepoint(positions, charges) + res = result.scf.sum(-1) + assert pytest.approx(ref.cpu(), abs=tol) == res.cpu() + + +@pytest.mark.filterwarnings("ignore") +@pytest.mark.parametrize("dtype", [torch.float, torch.double]) +@pytest.mark.parametrize("name", ["LYS_xao_dist"]) +def test_single_difficult_2(dtype: torch.dtype, name: str): + """Test a few larger system (only float32 within tolerance).""" + tol = 1e-3 + dd: DD = {"device": DEVICE, "dtype": dtype} + + sample = samples[name] + numbers = sample["numbers"].to(DEVICE) + positions = sample["positions"].to(**dd) + ref = sample["escf"].to(**dd) + charges = torch.tensor(0.0, **dd) + + options = dict( + opts, + **{ + "f_atol": 1e-5 if dtype == torch.float else 1e-7, + "x_atol": 1e-5 if dtype == torch.float else 1e-7, + "damp": 0.5, # simple mixing + "maxiter": 400, # simple mixing }, ) calc = Calculator(numbers, par, opts=options, **dd) diff --git a/test/test_scf/test_scp.py b/test/test_scf/test_scp.py index b1c96bf63..0e8b6233b 100644 --- a/test/test_scf/test_scp.py +++ b/test/test_scf/test_scp.py @@ -80,7 +80,7 @@ def single( @pytest.mark.filterwarnings("ignore") @pytest.mark.parametrize("dtype", [torch.float, torch.double]) -@pytest.mark.parametrize("name", ["H2", "LiH", "SiH4"]) +@pytest.mark.parametrize("name", ["LiH"]) @pytest.mark.parametrize("mixer", ["anderson", "simple"]) @pytest.mark.parametrize("scp_mode", ["charges", "potential", "fock"]) @pytest.mark.parametrize("scf_mode", ["full"]) @@ -91,9 +91,10 @@ def test_single( single(dtype, name, mixer, tol, scp_mode, scf_mode) +@pytest.mark.large @pytest.mark.filterwarnings("ignore") @pytest.mark.parametrize("dtype", [torch.float, torch.double]) -@pytest.mark.parametrize("name", ["MB16_43_01", "LYS_xao"]) +@pytest.mark.parametrize("name", ["H2", "SiH4", "MB16_43_01", "LYS_xao"]) @pytest.mark.parametrize("mixer", ["anderson", "simple"]) @pytest.mark.parametrize("scp_mode", ["charges", "potential", "fock"]) @pytest.mark.parametrize("scf_mode", ["full"]) @@ -105,6 +106,7 @@ def test_single_medium( single(dtype, name, mixer, tol, scp_mode, scf_mode) +@pytest.mark.large @pytest.mark.filterwarnings("ignore") @pytest.mark.parametrize("dtype", [torch.float, torch.double]) @pytest.mark.parametrize("name", ["S2", "LYS_xao_dist"]) @@ -185,7 +187,7 @@ def batched( @pytest.mark.filterwarnings("ignore") @pytest.mark.parametrize("dtype", [torch.float, torch.double]) -@pytest.mark.parametrize("name1", ["H2", "LiH"]) +@pytest.mark.parametrize("name1", ["LiH"]) @pytest.mark.parametrize("name2", ["LiH", "SiH4"]) @pytest.mark.parametrize("mixer", ["anderson", "broyden", "simple"]) @pytest.mark.parametrize("scp_mode", ["charges", "potential", "fock"]) diff --git a/test/test_singlepoint/test_energy.py b/test/test_singlepoint/test_energy.py index fc47493e7..2c01e7e18 100644 --- a/test/test_singlepoint/test_energy.py +++ b/test/test_singlepoint/test_energy.py @@ -36,6 +36,9 @@ from ..conftest import DEVICE from .samples import samples +slist = ["H2", "H2O", "CH4", "SiH4"] +slist_large = ["LYS_xao", "C60", "vancoh2", "AD7en+"] + opts = { "verbosity": 0, "scf_mode": labels.SCF_MODE_IMPLICIT_NON_PURE, @@ -45,7 +48,7 @@ @pytest.mark.filterwarnings("ignore") @pytest.mark.parametrize("dtype", [torch.float, torch.double]) -@pytest.mark.parametrize("name", ["H2", "H2O", "CH4", "SiH4", "LYS_xao"]) +@pytest.mark.parametrize("name", slist) @pytest.mark.parametrize("scf_mode", ["implicit", "nonpure", "full"]) def test_single(dtype: torch.dtype, name: str, scf_mode: str) -> None: tol = sqrt(torch.finfo(dtype).eps) * 10 @@ -79,7 +82,7 @@ def test_single(dtype: torch.dtype, name: str, scf_mode: str) -> None: @pytest.mark.large @pytest.mark.filterwarnings("ignore") @pytest.mark.parametrize("dtype", [torch.float, torch.double]) -@pytest.mark.parametrize("name", ["C60", "vancoh2", "AD7en+"]) +@pytest.mark.parametrize("name", slist_large) @pytest.mark.parametrize("scf_mode", ["implicit", "nonpure", "full"]) def test_single_large(dtype: torch.dtype, name: str, scf_mode: str) -> None: tol = sqrt(torch.finfo(dtype).eps) * 10 @@ -114,7 +117,7 @@ def test_single_large(dtype: torch.dtype, name: str, scf_mode: str) -> None: @pytest.mark.parametrize("dtype", [torch.float, torch.double]) @pytest.mark.parametrize("name1", ["H2", "H2O"]) @pytest.mark.parametrize("name2", ["H2", "CH4"]) -@pytest.mark.parametrize("name3", ["H2", "SiH4", "LYS_xao"]) +@pytest.mark.parametrize("name3", ["H2", "SiH4"]) @pytest.mark.parametrize("scf_mode", ["implicit", "nonpure", "full"]) def test_batch( dtype: torch.dtype, name1: str, name2: str, name3: str, scf_mode: str @@ -158,6 +161,55 @@ def test_batch( assert pytest.approx(ref.cpu(), abs=tol, rel=tol) == res.cpu() +@pytest.mark.large +@pytest.mark.filterwarnings("ignore") +@pytest.mark.parametrize("dtype", [torch.float, torch.double]) +@pytest.mark.parametrize("name1", ["H2"]) +@pytest.mark.parametrize("name2", ["CH4"]) +@pytest.mark.parametrize("name3", ["LYS_xao"]) +@pytest.mark.parametrize("scf_mode", ["implicit", "nonpure", "full"]) +def test_batch_large( + dtype: torch.dtype, name1: str, name2: str, name3: str, scf_mode: str +) -> None: + tol = sqrt(torch.finfo(dtype).eps) * 10 + dd: DD = {"device": DEVICE, "dtype": dtype} + + numbers, positions, charge = [], [], [] + for name in [name1, name2, name3]: + base = Path(Path(__file__).parent, "mols", name) + + nums, pos = read_coord(Path(base, "coord")) + chrg = read_chrg(Path(base, ".CHRG")) + + numbers.append(torch.tensor(nums, dtype=torch.long, device=DEVICE)) + positions.append(torch.tensor(pos, **dd)) + charge.append(torch.tensor(chrg, **dd)) + + numbers = pack(numbers) + positions = pack(positions) + charge = pack(charge) + ref = pack( + [ + samples[name1]["etot"].to(**dd), + samples[name2]["etot"].to(**dd), + samples[name3]["etot"].to(**dd), + ] + ) + + options = dict( + opts, + **{ + "scf_mode": scf_mode, + "mixer": "anderson" if scf_mode == "full" else "broyden", + }, + ) + calc = Calculator(numbers, par, opts=options, **dd) + + result = calc.singlepoint(positions, charge) + res = result.total.sum(-1) + assert pytest.approx(ref.cpu(), abs=tol, rel=tol) == res.cpu() + + @pytest.mark.filterwarnings("ignore") @pytest.mark.parametrize("dtype", [torch.float, torch.double]) @pytest.mark.parametrize("name", ["H", "NO2"]) diff --git a/test/test_singlepoint/test_grad.py b/test/test_singlepoint/test_grad.py index e2fcf2b8d..7246a001e 100644 --- a/test/test_singlepoint/test_grad.py +++ b/test/test_singlepoint/test_grad.py @@ -40,8 +40,6 @@ """['H2', 'H2O', 'CH4', 'SiH4', 'LYS_xao', 'AD7en+', 'C60', 'vancoh2']""" opts = { - "f_atol": 1.0e-10, - "x_atol": 1.0e-10, "maxiter": 50, "scf_mode": labels.SCF_MODE_IMPLICIT_NON_PURE, "scp_mode": labels.SCP_MODE_POTENTIAL, @@ -101,7 +99,15 @@ def analytical( positions = torch.tensor(positions, **dd, requires_grad=True) charge = torch.tensor(charge, **dd) - options = dict(opts, **{"scf_mode": scf_mode}) + options = dict( + opts, + **{ + "mixer": "anderson" if scf_mode == "full" else "broyden", + "f_atol": 1e-5 if dtype == torch.float else 1e-10, + "x_atol": 1e-5 if dtype == torch.float else 1e-10, + "scf_mode": scf_mode, + }, + ) calc = Calculator(numbers, par, opts=options, **dd) result = -calc.forces_analytical(positions, charge) gradient = result.detach() @@ -133,8 +139,10 @@ def test_backward(dtype: torch.dtype, name: str, scf_mode: str) -> None: options = dict( opts, **{ - "scf_mode": scf_mode, "mixer": "anderson" if scf_mode == "full" else "broyden", + "f_atol": 1e-5 if dtype == torch.float else 1e-10, + "x_atol": 1e-5 if dtype == torch.float else 1e-10, + "scf_mode": scf_mode, }, ) calc = Calculator(numbers, par, opts=options, **dd) diff --git a/test/test_singlepoint/test_grad_field.py b/test/test_singlepoint/test_grad_field.py index 683ae2f50..30fa34ef3 100644 --- a/test/test_singlepoint/test_grad_field.py +++ b/test/test_singlepoint/test_grad_field.py @@ -36,6 +36,7 @@ from .samples import samples opts = { + "int_level": labels.INTLEVEL_DIPOLE, "f_atol": 1.0e-8, "x_atol": 1.0e-8, "maxiter": 100, @@ -43,7 +44,7 @@ "verbosity": 0, } -tol = 1e-2 +tol = 1e-1 # FIXME: There seem to be multiple issues with this gradient here. # - SiH4 fails for 0.0 (0.01 check depends on eps) diff --git a/test/test_singlepoint/test_grad_fieldgrad.py b/test/test_singlepoint/test_grad_fieldgrad.py index 28182b017..978561e29 100644 --- a/test/test_singlepoint/test_grad_fieldgrad.py +++ b/test/test_singlepoint/test_grad_fieldgrad.py @@ -35,6 +35,7 @@ from .samples import samples opts = { + "int_level": labels.INTLEVEL_DIPOLE, "f_atol": 1.0e-8, "x_atol": 1.0e-8, "maxiter": 100, diff --git a/test/test_singlepoint/test_grad_pos_withfield.py b/test/test_singlepoint/test_grad_pos_withfield.py index 498e35990..3fea66087 100644 --- a/test/test_singlepoint/test_grad_pos_withfield.py +++ b/test/test_singlepoint/test_grad_pos_withfield.py @@ -36,6 +36,7 @@ from .samples import samples opts = { + "int_level": labels.INTLEVEL_DIPOLE, "f_atol": 1.0e-8, "x_atol": 1.0e-8, "maxiter": 100,