This repository has been archived by the owner on Sep 27, 2024. It is now read-only.
forked from openvinotoolkit/training_extensions
-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathevaluate_lfw.py
337 lines (274 loc) · 13.8 KB
/
evaluate_lfw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
"""
Copyright (c) 2018 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import argparse
import datetime
from functools import partial
import cv2 as cv
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision import transforms as t
from scipy.spatial.distance import cosine
import glog as log
from tqdm import tqdm
import numpy as np
from tensorboardX import SummaryWriter
from datasets.lfw import LFW
from utils.utils import load_model_state, get_model_parameters_number, flip_tensor
from utils.augmentation import ResizeNumpy, CenterCropNumpy, NumpyToTensor
from utils.face_align import FivePointsAligner
from model.common import models_backbones
def get_subset(container, subset_bounds):
"""Returns a subset of the given list with respect to the list of bounds"""
subset = []
for bound in subset_bounds:
subset += container[bound[0]: bound[1]]
return subset
def get_roc(scores_with_gt, n_threshs=400):
"""Computes a ROC cureve on the LFW dataset"""
thresholds = np.linspace(0., 4., n_threshs)
fp_rates = []
tp_rates = []
for threshold in thresholds:
fp = 0
tp = 0
for score_with_gt in scores_with_gt:
predict_same = score_with_gt['score'] < threshold
actual_same = score_with_gt['is_same']
if predict_same and actual_same:
tp += 1
elif predict_same and not actual_same:
fp += 1
fp_rates.append(float(fp) / len(scores_with_gt) * 2)
tp_rates.append(float(tp) / len(scores_with_gt) * 2)
return np.array(fp_rates), np.array(tp_rates)
def get_auc(fprs, tprs):
"""Computes AUC under a ROC curve"""
sorted_fprs, sorted_tprs = zip(*sorted(zip(*(fprs, tprs))))
sorted_fprs = list(sorted_fprs)
sorted_tprs = list(sorted_tprs)
if sorted_fprs[-1] != 1.0:
sorted_fprs.append(1.0)
sorted_tprs.append(sorted_tprs[-1])
return np.trapz(sorted_tprs, sorted_fprs)
def save_roc(fp_rates, tp_rates, fname):
assert fp_rates.shape[0] == tp_rates.shape[0]
with open(fname + '.txt', 'w') as f:
for i in range(fp_rates.shape[0]):
f.write('{} {}\n'.format(fp_rates[i], tp_rates[i]))
@torch.no_grad()
def compute_embeddings_lfw(args, dataset, model, batch_size, dump_embeddings=False,
pdist=lambda x, y: 1. - F.cosine_similarity(x, y), flipped_embeddings=False):
"""Computes embeddings of all images from the LFW dataset using PyTorch"""
val_loader = DataLoader(dataset, batch_size=batch_size, num_workers=4, shuffle=False)
scores_with_gt = []
embeddings = []
ids = []
for batch_idx, data in enumerate(tqdm(val_loader, 'Computing embeddings')):
images_1 = data['img1']
images_2 = data['img2']
is_same = data['is_same']
if torch.cuda.is_available() and args.devices[0] != -1:
images_1 = images_1.cuda()
images_2 = images_2.cuda()
emb_1 = model(images_1)
emb_2 = model(images_2)
if flipped_embeddings:
images_1_flipped = flip_tensor(images_1, 3)
images_2_flipped = flip_tensor(images_2, 3)
emb_1_flipped = model(images_1_flipped)
emb_2_flipped = model(images_2_flipped)
emb_1 = (emb_1 + emb_1_flipped)*.5
emb_2 = (emb_2 + emb_2_flipped)*.5
scores = pdist(emb_1, emb_2).data.cpu().numpy()
for i, _ in enumerate(scores):
scores_with_gt.append({'score': scores[i], 'is_same': is_same[i], 'idx': batch_idx*batch_size + i})
if dump_embeddings:
id0 = data['id0']
id1 = data['id1']
ids.append(id0)
ids.append(id1)
to_dump_1 = emb_1.data.cpu()
to_dump_2 = emb_2.data.cpu()
embeddings.append(to_dump_1)
embeddings.append(to_dump_2)
if dump_embeddings:
total_emb = np.concatenate(embeddings, axis=0)
total_ids = np.concatenate(ids, axis=0)
log_path = './logs/{:%Y_%m_%d_%H_%M}'.format(datetime.datetime.now())
writer = SummaryWriter(log_path)
writer.add_embedding(torch.from_numpy(total_emb), total_ids)
return scores_with_gt
def compute_embeddings_lfw_ie(args, dataset, model, batch_size=1, dump_embeddings=False,
pdist=cosine, flipped_embeddings=False, lm_model=None):
"""Computes embeddings of all images from the LFW dataset using Inference Engine"""
assert batch_size == 1
scores_with_gt = []
for batch_idx, data in enumerate(tqdm(dataset, 'Computing embeddings')):
images_1 = data['img1']
images_2 = data['img2']
if lm_model:
lm_input_size = tuple(lm_model.get_input_shape()[2:])
landmarks_1 = lm_model.forward(cv.resize(images_1, lm_input_size)).reshape(-1)
images_1 = FivePointsAligner.align(images_1, landmarks_1, *images_1.shape[:2], normalize=False, show=False)
landmarks_2 = lm_model.forward(cv.resize(images_2, lm_input_size)).reshape(-1)
images_2 = FivePointsAligner.align(images_2, landmarks_2, *images_2.shape[:2], normalize=False)
is_same = data['is_same']
emb_1 = model.forward(images_1).reshape(-1)
emb_2 = model.forward(images_2).reshape(-1)
score = pdist(emb_1, emb_2)
scores_with_gt.append({'score': score, 'is_same': is_same, 'idx': batch_idx * batch_size})
return scores_with_gt
def compute_optimal_thresh(scores_with_gt):
"""Computes an optimal threshold for pairwise face verification"""
pos_scores = []
neg_scores = []
for score_with_gt in scores_with_gt:
if score_with_gt['is_same']:
pos_scores.append(score_with_gt['score'])
else:
neg_scores.append(score_with_gt['score'])
hist_pos, bins = np.histogram(np.array(pos_scores), 60)
hist_neg, _ = np.histogram(np.array(neg_scores), bins)
intersection_bins = []
for i in range(1, len(hist_neg)):
if hist_pos[i - 1] >= hist_neg[i - 1] and 0.05 < hist_pos[i] <= hist_neg[i]:
intersection_bins.append(bins[i])
if not intersection_bins:
intersection_bins.append(0.5)
return np.mean(intersection_bins)
def evaluate(args, dataset, model, compute_embeddings_fun, val_batch_size=16,
dump_embeddings=False, roc_fname='', snap_name='', verbose=True, show_failed=False):
"""Computes the LFW score of given model"""
if verbose and isinstance(model, torch.nn.Module):
log.info('Face recognition model config:')
log.info(model)
log.info('Number of parameters: {}'.format(get_model_parameters_number(model)))
scores_with_gt = compute_embeddings_fun(args, dataset, model, val_batch_size, dump_embeddings)
num_pairs = len(scores_with_gt)
subsets = []
for i in range(10):
lower_bnd = i * num_pairs // 10
upper_bnd = (i + 1) * num_pairs // 10
subset_test = [(lower_bnd, upper_bnd)]
subset_train = [(0, lower_bnd), (upper_bnd, num_pairs)]
subsets.append({'test': subset_test, 'train': subset_train})
same_scores = []
diff_scores = []
val_scores = []
threshs = []
mean_fpr = np.zeros(400)
mean_tpr = np.zeros(400)
failed_pairs = []
for subset in tqdm(subsets, '{} evaluation'.format(snap_name), disable=not verbose):
train_list = get_subset(scores_with_gt, subset['train'])
optimal_thresh = compute_optimal_thresh(train_list)
threshs.append(optimal_thresh)
test_list = get_subset(scores_with_gt, subset['test'])
same_correct = 0
diff_correct = 0
pos_pairs_num = neg_pairs_num = len(test_list) // 2
for score_with_gt in test_list:
if score_with_gt['score'] < optimal_thresh and score_with_gt['is_same']:
same_correct += 1
elif score_with_gt['score'] >= optimal_thresh and not score_with_gt['is_same']:
diff_correct += 1
if score_with_gt['score'] >= optimal_thresh and score_with_gt['is_same']:
failed_pairs.append(score_with_gt['idx'])
if score_with_gt['score'] < optimal_thresh and not score_with_gt['is_same']:
failed_pairs.append(score_with_gt['idx'])
same_scores.append(float(same_correct) / pos_pairs_num)
diff_scores.append(float(diff_correct) / neg_pairs_num)
val_scores.append(0.5*(same_scores[-1] + diff_scores[-1]))
fprs, tprs = get_roc(test_list, mean_fpr.shape[0])
mean_fpr = mean_fpr + fprs
mean_tpr = mean_tpr + tprs
mean_fpr /= 10
mean_tpr /= 10
if roc_fname:
save_roc(mean_tpr, mean_fpr, roc_fname)
same_acc = np.mean(same_scores)
diff_acc = np.mean(diff_scores)
overall_acc = np.mean(val_scores)
auc = get_auc(mean_fpr, mean_tpr)
if show_failed:
log.info('Number of misclassified pairs: {}'.format(len(failed_pairs)))
for pair in failed_pairs:
dataset.show_item(pair)
if verbose:
log.info('Accuracy/Val_same_accuracy mean: {0:.4f}'.format(same_acc))
log.info('Accuracy/Val_diff_accuracy mean: {0:.4f}'.format(diff_acc))
log.info('Accuracy/Val_accuracy mean: {0:.4f}'.format(overall_acc))
log.info('Accuracy/Val_accuracy std dev: {0:.4f}'.format(np.std(val_scores)))
log.info('AUC: {0:.4f}'.format(auc))
log.info('Estimated threshold: {0:.4f}'.format(np.mean(threshs)))
return same_acc, diff_acc, overall_acc, auc
def load_test_dataset(arguments):
"""Loads and configures the LFW dataset"""
input_size = models_backbones[arguments.model].get_input_res()
lfw = LFW(arguments.val, arguments.v_list, arguments.v_land)
assert lfw.use_landmarks
log.info('Using landmarks for the LFW images.')
transform = t.Compose([ResizeNumpy(input_size),
NumpyToTensor(switch_rb=True)])
lfw.transform = transform
return lfw, partial(compute_embeddings_lfw, flipped_embeddings=arguments.flipped_emb)
def main():
parser = argparse.ArgumentParser(description='Evaluation script for Face Recognition in PyTorch')
parser.add_argument('--devices', type=int, nargs='+', default=[0], help='CUDA devices to use.')
parser.add_argument('--embed_size', type=int, default=128, help='Size of the face embedding.')
parser.add_argument('--val_data_root', dest='val', required=True, type=str, help='Path to validation data.')
parser.add_argument('--val_list', dest='v_list', required=True, type=str, help='Path to train data image list.')
parser.add_argument('--val_landmarks', dest='v_land', default='', required=False, type=str,
help='Path to landmarks for the test images.')
parser.add_argument('--val_batch_size', type=int, default=8, help='Validation batch size.')
parser.add_argument('--snap', type=str, required=False, help='Snapshot to evaluate.')
parser.add_argument('--roc_fname', type=str, default='', help='ROC file.')
parser.add_argument('--dump_embeddings', action='store_true', help='Dump embeddings to summary writer.')
parser.add_argument('--dist', choices=['l2', 'cos'], type=str, default='cos', help='Distance.')
parser.add_argument('--flipped_emb', action='store_true', help='Flipped embedding concatenation trick.')
parser.add_argument('--show_failed', action='store_true', help='Show misclassified pairs.')
parser.add_argument('--model', choices=models_backbones.keys(), type=str, default='rmnet', help='Model type.')
parser.add_argument('--engine', choices=['pt', 'ie'], type=str, default='pt', help='Framework to use for eval.')
# IE-related options
parser.add_argument('--fr_model', type=str, required=False)
parser.add_argument('--lm_model', type=str, required=False)
parser.add_argument('-pp', '--plugin_dir', type=str, default=None, help='Path to a plugin folder')
args = parser.parse_args()
if args.engine == 'pt':
assert args.snap is not None, 'To evaluate PyTorch snapshot, please, specify --snap option.'
with torch.cuda.device(args.devices[0]):
data, embeddings_fun = load_test_dataset(args)
model = models_backbones[args.model](embedding_size=args.embed_size, feature=True)
model = load_model_state(model, args.snap, args.devices[0])
evaluate(args, data, model, embeddings_fun, args.val_batch_size, args.dump_embeddings,
args.roc_fname, args.snap, True, args.show_failed)
else:
from utils.ie_tools import load_ie_model
assert args.fr_model is not None, 'To evaluate IE model, please, specify --fr_model option.'
fr_model = load_ie_model(args.fr_model, 'CPU', args.plugin_dir)
lm_model = None
if args.lm_model:
lm_model = load_ie_model(args.lm_model, 'CPU', args.plugin_dir)
input_size = tuple(fr_model.get_input_shape()[2:])
lfw = LFW(args.val, args.v_list, args.v_land)
if not lfw.use_landmarks or lm_model:
lfw.transform = t.Compose([ResizeNumpy(220), CenterCropNumpy(input_size)])
lfw.use_landmarks = False
else:
log.info('Using landmarks for the LFW images.')
lfw.transform = t.Compose([ResizeNumpy(input_size)])
evaluate(args, lfw, fr_model, partial(compute_embeddings_lfw_ie, lm_model=lm_model), val_batch_size=1,
dump_embeddings=False, roc_fname='', snap_name='', verbose=True, show_failed=False)
if __name__ == '__main__':
main()