-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathvis_corex.py
558 lines (485 loc) · 24.6 KB
/
vis_corex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
""" This module implements some visualizations of CorEx representations.
"""
import os
from itertools import combinations
import numpy as np
import pylab
import networkx as nx
import matplotlib.pyplot as plt
import codecs
import seaborn as sns
# These are the "Tableau 20" colors as RGB.
tableau20 = [(31, 119, 180), (255, 127, 14),
(44, 160, 44), (214, 39, 40), (255, 152, 150),
(148, 103, 189), (197, 176, 213), (140, 86, 75), (196, 156, 148),
(227, 119, 194), (247, 182, 210), (127, 127, 127), (199, 199, 199),
(188, 189, 34), (219, 219, 141), (23, 190, 207), (158, 218, 229)]
# Scale the RGB values to the [0, 1] range, which is the format matplotlib accepts.
for i in range(len(tableau20)):
r, g, b = tableau20[i]
tableau20[i] = (r / 255., g / 255., b / 255.)
# Main visualization routines
def vis_rep(corex, data, row_label=None, column_label=None, prefix='corex_output', max_edges=200):
"""Various visualizations and summary statistics for a one layer representation"""
if column_label is None:
column_label = list(map(str, list(range(data.shape[1]))))
else:
column_label = [extract_color(label)[0] for label in column_label]
if row_label is None:
row_label = list(map(str, list(range(len(data)))))
dual = corex.moments['rho'] * corex.moments['X_i Z_j'].T
alpha = dual > 0.05 # Explains at least 5% of variance
print('Variable groups in summary/groups.txt')
output_groups(corex.ws, corex.moments, alpha, corex.mis, column_label, prefix=prefix)
print("Latent factors for each sample in summary/labels.txt")
labels = corex.transform(data)
output_labels(labels, row_label, prefix=prefix)
if hasattr(corex, "history"):
print("Convergence of objective in summary/convergence.pdf")
plot_convergence(corex.history, prefix=prefix)
print('Pairwise plots among high TC variables in "relationships"')
plot_heatmaps(data, corex.mis, column_label, corex.transform(data), prefix=prefix)
plot_top_relationships(data, corex, labels, column_label, prefix=prefix)
def output_groups(ws, moments, alpha, mis, column_label, thresh=0, prefix=''):
tc = moments["TC"]
tcs = moments["TCs"]
add = moments["additivity"]
dual = (moments['X_i Y_j'] * moments['X_i Z_j']).T
f = safe_open(prefix + '/summary/groups.txt', 'w+')
g = safe_open(prefix + '/summary/groups_no_overlaps.txt', 'w+')
h = safe_open(prefix + '/summary/summary.txt', 'w+')
h.write('Group, TC\n')
m, nv = mis.shape
f.write('variable, weight, MI\n')
g.write('variable, weight, MI\n')
for j in range(m):
f.write('Group num: %d, TC(X;Y_j): %0.6f\n' % (j, tcs[j]))
g.write('Group num: %d, TC(X;Y_j): %0.6f\n' % (j, tcs[j]))
h.write('%d, %0.6f\n' % (j, tcs[j]))
inds = np.where(alpha[j] > 0)[0]
inds = inds[np.argsort(-np.abs(ws)[j][inds])]
for ind in inds:
f.write(column_label[ind] + ', {:.3f}, {:.3f}\n'.format(ws[j][ind], mis[j][ind]))
inds = np.where(np.argmax(np.abs(ws), axis=0) == j)[0]
inds = inds[np.argsort(-np.abs(ws)[j][inds])]
for ind in inds:
g.write(column_label[ind] + ', {:.3f}, {:.3f}\n'.format(ws[j][ind], mis[j][ind]))
h.write('Total: {:f}\n'.format(np.sum(tcs)))
h.write('The total of individual TCs should approximately equal the objective: {:f}\n'.format(tc))
h.write('If not, this signals redundancy/synergy in the final solution (measured by additivity: {:f}'.format(add))
f.close()
g.close()
h.close()
def output_labels(labels, row_label, prefix=''):
f = safe_open(prefix + '/summary/labels.txt', 'w+')
ns, m = labels.shape
for l in range(ns):
f.write(row_label[l] + ',' + ','.join(map(str, labels[l, :])) + '\n')
f.close()
def plot_convergence(history, prefix='', prefix2=''):
plt.figure(figsize=(8, 5))
ax = plt.subplot(111)
ax.get_xaxis().tick_bottom()
ax.get_yaxis().tick_left()
plt.plot(history["TC"], '-', lw=2.5, color=tableau20[0])
x = len(history["TC"])
y = np.max(history["TC"])
plt.text(0.5 * x, 0.8 * y, "TC", fontsize=18, fontweight='bold', color=tableau20[0])
if "additivity" in history:
plt.plot(history["additivity"], '-', lw=2.5, color=tableau20[1])
plt.text(0.5 * x, 0.3 * y, "additivity", fontsize=18, fontweight='bold', color=tableau20[1])
plt.ylabel('TC', fontsize=12, fontweight='bold')
plt.xlabel('# Iterations', fontsize=12, fontweight='bold')
plt.suptitle('Convergence', fontsize=12)
filename = '{}/summary/convergence{}.pdf'.format(prefix, prefix2)
if not os.path.exists(os.path.dirname(filename)):
os.makedirs(os.path.dirname(filename))
plt.savefig(filename, bbox_inches="tight")
plt.close('all')
return True
def plot_heatmaps(data, mis, column_label, cont, topk=30, prefix=''):
cmap = sns.cubehelix_palette(as_cmap=True, light=.9)
m, nv = mis.shape
for j in range(m):
inds = np.argsort(- mis[j, :])[:topk]
if len(inds) >= 2:
plt.clf()
order = np.argsort(cont[:,j])
subdata = data[:, inds][order].T
subdata -= np.nanmean(subdata, axis=1, keepdims=True)
subdata /= np.nanstd(subdata, axis=1, keepdims=True)
columns = [column_label[i] for i in inds]
sns.heatmap(subdata, vmin=-3, vmax=3, cmap=cmap, yticklabels=columns, xticklabels=False, mask=np.isnan(subdata))
filename = '{}/heatmaps/group_num={}.png'.format(prefix, j)
if not os.path.exists(os.path.dirname(filename)):
os.makedirs(os.path.dirname(filename))
plt.title("Latent factor {}".format(j))
plt.yticks(rotation=0)
plt.savefig(filename, bbox_inches='tight')
plt.close('all')
#plot_rels(data[:, inds], map(lambda q: column_label[q], inds), colors=cont[:, j],
# outfile=prefix + '/relationships/group_num=' + str(j), latent=labels[:, j], alpha=0.1)
def plot_top_relationships(data, corex, labels, column_label, topk=5, prefix=''):
dual = (corex.moments['X_i Y_j'] * corex.moments['X_i Z_j']).T
alpha = dual > 0.04
cy = corex.moments['ry']
m, nv = alpha.shape
for j in range(m):
inds = np.where(alpha[j] > 0)[0]
inds = inds[np.argsort(- dual[j][inds])][:topk]
if len(inds) >= 2:
if dual[j, inds[0]] > 0.1:
factor = labels[:, j]
title = '$Y_{%d}$' % j
else:
k = np.argmax(np.abs(cy[j]))
if k == j:
k = np.argsort(-np.abs(cy[j]))[1]
factor = corex.moments['X_i Z_j'][inds[0], j] * labels[:, j] + corex.moments['X_i Z_j'][inds[0], k] * labels[:, k]
title = '$Y_{%d} + Y_{%d}$' % (j, k)
plot_rels(data[:, inds], [column_label[q] for q in inds], colors=factor,
outfile=prefix + '/relationships/group_num=' + str(j), title=title)
def plot_rels(data, labels=None, colors=None, outfile="rels", latent=None, alpha=0.8, title=''):
ns, n = data.shape
if labels is None:
labels = list(map(str, list(range(n))))
ncol = 5
nrow = int(np.ceil(float(n * (n - 1) / 2) / ncol))
fig, axs = pylab.subplots(nrow, ncol)
fig.set_size_inches(5 * ncol, 5 * nrow)
pairs = list(combinations(list(range(n)), 2))
if colors is not None:
colors = (colors - np.min(colors)) / (np.max(colors) - np.min(colors))
for ax, pair in zip(axs.flat, pairs):
diff_x = max(data[:, pair[0]]) - min(data[:, pair[0]])
diff_y = max(data[:, pair[1]]) - min(data[:, pair[1]])
ax.set_xlim([min(data[:, pair[0]]) - 0.05 * diff_x, max(data[:, pair[0]]) + 0.05 * diff_x])
ax.set_ylim([min(data[:, pair[1]]) - 0.05 * diff_y, max(data[:, pair[1]]) + 0.05 * diff_y])
ax.scatter(data[:, pair[0]], data[:, pair[1]], c=colors, cmap=pylab.get_cmap("jet"),
marker='.', alpha=alpha, edgecolors='none', vmin=0, vmax=1)
ax.set_xlabel(shorten(labels[pair[0]]))
ax.set_ylabel(shorten(labels[pair[1]]))
for ax in axs.flat[axs.size - 1:len(pairs) - 1:-1]:
ax.scatter(data[:, 0], data[:, 1], marker='.')
fig.suptitle(title, fontsize=16)
pylab.rcParams['font.size'] = 12 #6
# pylab.draw()
# fig.set_tight_layout(True)
pylab.tight_layout()
pylab.subplots_adjust(top=0.95)
for ax in axs.flat[axs.size - 1:len(pairs) - 1:-1]:
ax.set_visible(False)
filename = outfile + '.png'
if not os.path.exists(os.path.dirname(filename)):
os.makedirs(os.path.dirname(filename))
fig.savefig(outfile + '.png')
pylab.close('all')
return True
# Hierarchical graph visualization utilities
def vis_hierarchy(corexes, column_label=None, max_edges=100, prefix=''):
"""Visualize a hierarchy of representations."""
if column_label is None:
column_label = list(map(str, list(range(corexes[0].mis.shape[1]))))
f = safe_open(prefix + '/summary/higher_layer_group_tcs.txt', 'w+')
for j, corex in enumerate(corexes):
f.write('At layer: %d, Total TC: %0.3f\n' % (j, corex.tc))
f.write('Individual TCS:' + str(corex.tcs) + '\n')
if hasattr(corex, "history"):
plot_convergence(corex.history, prefix=prefix, prefix2=j)
f.close()
import textwrap
column_label = ['\n'.join(textwrap.wrap(q, width=17, break_long_words=False)) for q in column_label]
#dual = (corex.moments['X_i Y_j'] * corex.moments['X_i Z_j']).T
#alpha = dual > 0.04 # sieve.mis > (0.1 * np.max(sieve.mis, axis=1, keepdims=True)).clip(-np.log1p(-1. / sieve.n_samples) * 3) # TODO: is that permanent?
# Construct non-tree graph
alphas = [(corex.moments['X_i Y_j'] * corex.moments['X_i Z_j']).T > 0.04 for corex in corexes] # TODO: is that permanent?
# weights = [alphas[k] * np.abs(corex.ws) / np.max(np.abs(corex.ws)) for k, corex in enumerate(corexes)]
weights = [alphas[k] * np.abs(corex.ws) for k, corex in enumerate(corexes)]
node_weights = [corex.tcs for corex in corexes]
g = make_graph(weights, node_weights, column_label, max_edges=max_edges)
# Display pruned version
h = g.copy() # trim(g.copy(), max_parents=max_parents, max_children=max_children)
edge2pdf(h, prefix + '/graphs/graph_prune_' + str(max_edges), labels='label', directed=True, makepdf=True)
# Display tree version
tree = g.copy()
tree = trim(tree, max_parents=1, max_children=False)
edge2pdf(tree, prefix + '/graphs/tree', labels='label', directed=True, makepdf=True)
return g
def neato(fname, position=None, directed=False):
if directed:
os.system(
"sfdp " + fname + ".dot -Tpdf -Earrowhead=none -Nfontsize=12 -GK=2 -Gmaxiter=1000 -Goverlap=False -Gpack=True -Gpackmode=clust -Gsep=0.01 -Gsplines=False -o " + fname + "_sfdp.pdf")
os.system(
"sfdp " + fname + ".dot -Tpdf -Earrowhead=none -Nfontsize=12 -GK=2 -Gmaxiter=1000 -Goverlap=False -Gpack=True -Gpackmode=clust -Gsep=0.01 -Gsplines=True -o " + fname + "_sfdp_w_splines.pdf")
return True
if position is None:
os.system("neato " + fname + ".dot -Tpdf -o " + fname + ".pdf")
os.system("fdp " + fname + ".dot -Tpdf -o " + fname + "fdp.pdf")
else:
os.system("neato " + fname + ".dot -Tpdf -n -o " + fname + ".pdf")
return True
def extract_color(label):
import matplotlib
colors = list(matplotlib.colors.cnames.keys())
parts = label.split('_')
for part in parts:
if part in colors:
parts.remove(part)
return '_'.join(parts), part
return label, 'black'
def edge2pdf(g, filename, threshold=0, position=None, labels=None, connected=True, directed=False, makepdf=True):
#This function will takes list of edges and a filename
#and write a file in .dot format. Readable, eg. by omnigraffle
# OR use "neato file.dot -Tpng -n -o file.png"
# The -n option says whether to use included node positions or to generate new ones
# for a grid, positions = [(i%28,i/28) for i in range(784)]
def cnn(node):
#change node names for dot format
if type(node) is tuple or type(node) is list:
return 'n' + '_'.join(map(str, node))
else:
return str(node)
if connected:
touching = list(set(sum([[a, b] for a, b in g.edges()], [])))
g = nx.subgraph(g, touching)
print('non-isolated nodes,edges', len(list(g.nodes())), len(list(g.edges())))
f = safe_open(filename + '.dot', 'w+')
if directed:
f.write("strict digraph {\n")
else:
f.write("strict graph {\n")
#f.write("\tgraph [overlap=scale];\n".encode('utf-8'))
f.write("\tnode [shape=point];\n")
for a, b, d in g.edges(data=True):
if 'weight' in d:
if directed:
f.write(("\t" + cnn(a) + ' -> ' + cnn(b) + ' [penwidth=%.2f' % float(
np.clip(d['weight'], 0, 9)) + '];\n'))
else:
if d['weight'] > threshold:
f.write(("\t" + cnn(a) + ' -- ' + cnn(b) + ' [penwidth=' + str(3 * d['weight']) + '];\n'))
else:
if directed:
f.write(("\t" + cnn(a) + ' -> ' + cnn(b) + ';\n'))
else:
f.write(("\t" + cnn(a) + ' -- ' + cnn(b) + ';\n'))
for n in g.nodes():
if labels is not None:
if type(labels) == dict or type(labels) == list:
thislabel = labels[n].replace('"', '\\"')
lstring = 'label="' + thislabel + '",shape=none'
elif type(labels) == str:
if 'label' in g.nodes[n]:
thislabel = g.nodes[n][labels].replace('"', '\\"')
# combine dupes
#llist = thislabel.split(',')
#thislabel = ','.join([l for l in set(llist)])
thislabel, thiscolor = extract_color(thislabel)
lstring = 'label="%s",shape=none,fontcolor="%s"' % (thislabel, thiscolor)
else:
weight = g.nodes[n].get('weight', 0.1)
if n[0] == 1:
lstring = 'shape=circle,margin="0,0",style=filled,fillcolor=black,fontcolor=white,height=%0.2f,label="Y%d"' % (2 * weight, n[1])
else:
lstring = 'shape=point,height=%0.2f' % weight
else:
lstring = 'label="' + str(n) + '",shape=none'
lstring = str(lstring)
else:
lstring = False
if position is not None:
if position == 'grid':
position = [(i % 28, 28 - i / 28) for i in range(784)]
posstring = str('pos="' + str(position[n][0]) + ',' + str(position[n][1]) + '"')
else:
posstring = False
finalstring = ' [' + ','.join([ts for ts in [posstring, lstring] if ts]) + ']\n'
#finalstring = u' ['+lstring+u']\n'
f.write(('\t' + cnn(n) + finalstring))
f.write("}")
f.close()
if makepdf:
neato(filename, position=position, directed=directed)
return True
def shorten(s, n=12):
if len(s) > 2 * n:
return s[:n] + '..' + s[-n:]
return s
def make_graph(weights, node_weights, column_label, max_edges=100):
all_edges = np.hstack(list(map(np.ravel, weights)))
max_edges = min(max_edges, len(all_edges))
w_thresh = np.sort(all_edges)[-max_edges]
print('weight threshold is %f for graph with max of %f edges ' % (w_thresh, max_edges))
g = nx.DiGraph()
max_node_weight = max([max(w) for w in node_weights])
for layer, weight in enumerate(weights):
m, n = weight.shape
for j in range(m):
g.add_node((layer + 1, j))
g.nodes[(layer + 1, j)]['weight'] = 0.3 * node_weights[layer][j] / max_node_weight
for i in range(n):
if weight[j, i] > w_thresh:
if weight[j, i] > w_thresh / 2:
g.add_weighted_edges_from([( (layer, i), (layer + 1, j), 10 * weight[j, i])])
else:
g.add_weighted_edges_from([( (layer, i), (layer + 1, j), 0)])
# Label layer 0
for i, lab in enumerate(column_label):
g.add_node((0, i))
g.nodes[(0, i)]['label'] = lab
g.nodes[(0, i)]['name'] = lab # JSON uses this field
g.nodes[(0, i)]['weight'] = 1
return g
def trim(g, max_parents=False, max_children=False):
for node in g:
if max_parents:
parents = list(g.successors(node))
# https://networkx.github.io/documentation/stable/release/migration_guide_from_1.x_to_2.0.html
weights = [g.adj[node][parent]['weight'] for parent in parents]
for weak_parent in np.argsort(weights)[:-max_parents]:
g.remove_edge(node, parents[weak_parent])
if max_children:
children = g.predecessors(node)
# https://networkx.github.io/documentation/stable/release/migration_guide_from_1.x_to_2.0.html
weights = [g.adj[child][node]['weight'] for child in children]
for weak_child in np.argsort(weights)[:-max_children]:
g.remove_edge(children[weak_child], node)
return g
# Misc. utilities
def safe_open(filename, mode):
if not os.path.exists(os.path.dirname(filename)):
os.makedirs(os.path.dirname(filename))
return codecs.open(filename, mode)
if __name__ == '__main__':
# Command line interface
# Sample commands:
# python vis_corex.py tests/test_data.csv
import linearcorex as lc
from time import time
import csv
import sys
import traceback
import pickle
from optparse import OptionParser, OptionGroup
parser = OptionParser(usage="usage: %prog [options] data_file.csv \n"
"It is assumed that the first row and first column of the data CSV file are labels.\n"
"Use options to indicate otherwise.")
group = OptionGroup(parser, "Input Data Format Options")
group.add_option("-t", "--no_column_names",
action="store_true", dest="nc", default=False,
help="We assume the top row is variable names for each column. "
"This flag says that data starts on the first row and gives a "
"default numbering scheme to the variables (1,2,3...).")
group.add_option("-f", "--no_row_names",
action="store_true", dest="nr", default=False,
help="We assume the first column is a label or index for each sample. "
"This flag says that data starts on the first column.")
group.add_option("-m", "--missing",
action="store", dest="missing", type="float", default=-1e6,
help="Treat this value as missing data.")
group.add_option("-d", "--delimiter",
action="store", dest="delimiter", type="string", default=",",
help="Separator between entries in the data, default is ','.")
group.add_option("-g", "--gaussianize",
action="store", dest="gaussianize", type="string", default="standard",
help="Try gaussianize='outliers' if there are long tails.")
parser.add_option_group(group)
group = OptionGroup(parser, "CorEx Options")
group.add_option("-l", "--layers", dest="layers", type="string", default="2,1",
help="Specify number of units at each layer: 5,3,1 has "
"5 units at layer 1, 3 at layer 2, and 1 at layer 3")
group.add_option("-w", "--max_iter",
action="store", dest="max_iter", type="int", default=10000,
help="Max number of iterations to use.")
group.add_option("-a", "--additive",
action="store_false", dest="additive", default=True,
help="By default, we attempt to find non-synergistic solutions (better). -a will turn this off.")
parser.add_option_group(group)
group = OptionGroup(parser, "Computational Options")
group.add_option("-n", "--gpu",
action="store_true", dest="gpu", default=False,
help="Try to use the gpu.")
parser.add_option_group(group)
group = OptionGroup(parser, "Output Options")
group.add_option("-o", "--output",
action="store", dest="output", type="string", default="corex_output",
help="A directory to put all output files.")
group.add_option("-v", "--verbose",
action="store", dest="verbose", type="int", default=0,
help="Print rich outputs while running (different levels of verbosity: 0,1,2).")
group.add_option("-e", "--edges",
action="store", dest="max_edges", type="int", default=200,
help="Show at most this many edges in graphs.")
group.add_option("-q", "--regraph",
action="store_true", dest="regraph", default=False,
help="Don't re-run corex, just re-generate outputs (perhaps with edges option changed).")
parser.add_option_group(group)
(options, args) = parser.parse_args()
if not len(args) == 1:
print("Run with '-h' option for usage help.")
sys.exit()
np.set_printoptions(precision=3, suppress=True) # For legible output from numpy
layers = list(map(int, options.layers.split(',')))
if layers[-1] != 1:
layers.append(1) # Last layer has one unit for convenience so that graph is fully connected.
verbose = options.verbose
#Load data from csv file
filename = args[0]
with open(filename, 'r') as csvfile:
reader = csv.reader(csvfile, delimiter=options.delimiter)
if options.nc:
variable_names = None
else:
variable_names = next(reader)[(1 - options.nr):]
sample_names = []
data = []
for row in reader:
if options.nr:
sample_names = None
else:
sample_names.append(row[0])
data.append(row[(1 - options.nr):])
try:
X = np.array(data, dtype=float) # Data matrix in numpy format
except:
print("Incorrect data format.\nCheck that you've correctly specified options " \
"such as continuous or not, \nand if there is a header row or column.\n" \
"Also, missing values should be specified with a numeric value (-1 by default).\n" \
"Run 'python vis_corex.py -h' option for help with options.")
traceback.print_exc(file=sys.stdout)
sys.exit()
if verbose:
print('\nData summary: X has %d rows and %d columns' % X.shape)
if not options.nc:
print('Variable names are: ' + ','.join(map(str, list(enumerate(variable_names)))))
# Run CorEx on data
if verbose:
print('Getting CorEx results')
if not options.regraph:
for l, layer in enumerate(layers):
if verbose:
print("Layer ", l)
if l == 0:
t0 = time()
corexes = [lc.Corex(n_hidden=layer, verbose=verbose, gaussianize=options.gaussianize,
missing_values=options.missing, discourage_overlap=options.additive,
gpu=options.gpu,
max_iter=options.max_iter).fit(X)]
print('Time for first layer: %0.2f' % (time() - t0))
X_prev = X
else:
X_prev = corexes[-1].transform(X_prev)
corexes.append(lc.Corex(n_hidden=layer, verbose=verbose, gaussianize=options.gaussianize,
gpu=options.gpu,
discourage_overlap=options.additive, max_iter=options.max_iter).fit(X_prev))
for l, corex in enumerate(corexes):
# The learned model can be loaded again using ce.Corex().load(filename)
print('TC at layer %d is: %0.3f' % (l, corex.tc))
pickle.dump(corex, safe_open(options.output + '/layer_' + str(l) + '.dat', 'wb'))
else:
corexes = [pickle.load(open(options.output + '/layer_' + str(l) + '.dat')) for l in range(len(layers))]
# This line outputs plots showing relationships at the first layer
vis_rep(corexes[0], X, row_label=sample_names, column_label=variable_names, prefix=options.output)
# This line outputs a hierarchical networks structure in a .dot file in the "graphs" folder
# And it tries to compile the dot file into a pdf using the command line utility sfdp (part of graphviz)
vis_hierarchy(corexes, column_label=variable_names, max_edges=options.max_edges, prefix=options.output)