-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathgps.py
928 lines (818 loc) · 34.6 KB
/
gps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
#!/usr/bin/env python
"""
Greg Starr
this is based mostly on Bill Rideout's tec.py
scripts, I'm not using classes and I am using
numpy because I like it better, the rinex
reading was made by Michael Hirsch and Greg Starr
"""
from __future__ import division,absolute_import,print_function
from pathlib import Path
import numpy as np
from datetime import datetime
from pandas import DataFrame,Series,Panel4D
from pandas.io.pytables import read_hdf
from io import BytesIO
import time
#
from pymap3d import ecef2geodetic,ecef2aer,aer2geodetic
f1 = 1575.42E6 #MHz
f2 = 1227.6E6 #MHz
def getIntervals(data,sat_num,maxgap=3,maxjump=1.2):
"""
scans through the phase tec of a satellite and determines where "good"
intervals begin and end
inputs:
data - Panel4D with dimensions (parameter,satellite number,time,data/lli/ssi)
sat_num - the number of the satellite to get good intervals for
maxgap - maximum number of nans before starting new interval
maxjump - maximum jump in phase TEC before starting new interval
output:
intervals - list of 2-tuples, beginning and end of each "good" interval
as a Pandas/numpy datetime64
"""
if c2p2(data,sat_num):
finite_values = np.where(np.logical_and.reduce((
np.isfinite(data[['L1','L2','C1','C2'],sat_num,:,'data']).T)))[0]
else:
finite_values = np.where(np.logical_and.reduce((
np.isfinite(data[['L1','L2','C1','P2'],sat_num,:,'data']).T)))[0]
intervals=[]
if len(finite_values)==0:
return intervals
phase_tec=2.85E9*(data['L1',sat_num,:,'data']/f1-data['L2',sat_num,:,'data']/f2)
beginning=finite_values[0]
last=finite_values[0]
for i in finite_values[1:]:
if i-last>maxgap or abs(phase_tec[i]-phase_tec[last])>maxjump:
intervals.append((beginning,last))
beginning=i
last=i
if i==finite_values[-1]:
intervals.append((beginning,last))
intervals=[(data.major_axis[time[0]],data.major_axis[time[1]]) for time in intervals]
return intervals
def getTec(data,sat_num,data_interval,satbias=None):
"""
calculates slant TEC using phase tec shifted by the median difference
between phase tec and pseudorange tec
inputs:
data - Panel4D with dimensions (parameter,satellite number,time,data/lli/ssi)
sat_num - the number of the satellite to calculate TEC for
data_interval - the interval made from getInterval(), it's a 2-tuple
marking the beginning and the end of a "good" interval
of data, each value is a Pandas/numpy datetime64
"""
if c2p2(data,sat_num,data_interval):
range_tec = (2.85E9/3.0E8)*(
data['C2',sat_num,data_interval[0]:data_interval[1],'data']
-data['C1',sat_num,data_interval[0]:data_interval[1],'data'])
else:
range_tec = (2.85E9/3.0E8)*(
data['P2',sat_num,data_interval[0]:data_interval[1],'data']
-data['C1',sat_num,data_interval[0]:data_interval[1],'data'])
phase_tec=2.85E9*(data['L1',sat_num,data_interval[0]:data_interval[1],'data']/f1
-data['L2',sat_num,data_interval[0]:data_interval[1],'data']/f2)
tec_difference = np.array(sorted(phase_tec-range_tec))
tec_difference = tec_difference[np.isfinite(tec_difference)]
median_difference = tec_difference[int(len(tec_difference)/2)]
difference_width = tec_difference[int(len(tec_difference)*.75)]-tec_difference[int(len(tec_difference)*.25)]
median_error = difference_width/np.sqrt(len(tec_difference))
tec = phase_tec - median_difference
return tec,median_error
def c2p2(data,svn,drange=(None,None)):
"""
determines if the data has more values of C2 or P2 for a given satellite
"""
return (np.sum(~np.isnan(
data['C2',svn,drange[0]:drange[1],'data']))>
np.sum(~np.isnan(
data['P2',svn,drange[0]:drange[1],'data'])))
class satelliteBias:
"""satelliteBias is a class to get satellite biases in tec units
Once biases are loaded, get them using the dictionary attribute
dict. Key is tuple of prn (integer) and biasType (integer). If
TEC is calculated using C1, set biasType to 1. If
TEC is calculated using P1, set biasType to 0. If TEC is calculated
using C1 and C2, set biasType to 2.
"""
def __init__(self, satFile, C1BiasFile, L2C2BiasFile):
"""__init__ sets up the dictionary self.dict
satFile - the ionex file with satellite biases as produced by
JPL in ftp://cddis.gsfc.nasa.gov/pub/gps/products/ionex/
C1BiasFile - the P1C1 bias file (may be None for verification only)
L2C2BiasFile - the P2C2 bias file (may be None for verification only)
"""
self.dict = {}
self.__parseSatBiasFile(satFile)
self.__parseC1BiasFile(C1BiasFile)
self._parseC2BiasFile(L2C2BiasFile)
def __parseSatBiasFile(self, satFile):
"""__parseSatBiasFile parses satellite bias file, and adds data
to self.dict
"""
indicatorStr = 'DIFFERENTIAL CODE BIASES'
# conversionFactor in TECu
conversionFactor = -0.463*6.158 # diff ns -> meters -> tec
with satFile.open('r') as f:
lines = f.readlines()
lineFound = 0 # indicates right line found
dataFound = 0 # indicates at least one line of data found
for line in lines:
if line[0:len(indicatorStr)] == indicatorStr:
lineFound = 1
continue
if lineFound:
items = line.split()
# see if we're done
try:
try:
sv = int(items[0])
except:
# see if last two characters are ints and first is G
if items[0][0] == 'G':
sv = int(items[0][-2:])
else:
raise(IOError, '')
bias = float(items[1])*conversionFactor
dataFound = 1
# add this data to dict
self.dict[(sv,0)] = bias
except:
if dataFound == 0:
# no valid lines found
raise IOError('No valid data found after indicator in %s' % (satFile))
else:
return
# if we got here, the indicator wasn't found, or the data was the last line in the file
if dataFound == 1:
return
else:
raise(IOError,
'No indicator string found in %s' % (satFile))
def __parseC1BiasFile(self, C1BiasFile):
"""__parseC1BiasFile parses p1c1 bias file, and adds data
to self.dict
Bias is added to existing biases
"""
conversionFactor = -0.463*6.158 # diff ns -> meters -> tec
# allow no C1BiasFile for case where normal bias just being verified
if C1BiasFile is None:
return
with C1BiasFile.open('r') as f:
lines = f.readlines()
# print warning if no data found
dataFound = False
for line in lines:
try:
items = line.split()
if items[0][0] in ('G', 'g'):
prn = int(items[0][1:])
else:
prn = int(items[0])
addBias = float(items[1])* conversionFactor
self.dict[(prn, 1)] = self.dict[(prn, 0)] - addBias
dataFound = True
except:
continue
if not dataFound:
print('WARNING: No valid data found in %s' % (C1BiasFile))
def _parseC2BiasFile(self, L2C2BiasFile):
"""__parseC2BiasFile parses p2c2 bias file, and adds data
to self.dict
Bias is added to existing biases
"""
conversionFactor = -0.463*6.158 # diff ns -> meters -> tec
# allow no C1BiasFile for case where normal bias just being verified
if L2C2BiasFile is None:
return
with L2C2BiasFile.open('r') as f:
lines = f.readlines()
# print warning if no data found
dataFound = False
for line in lines:
try:
items = line.split()
if items[0][0] in ('G', 'g'):
prn = int(items[0][1:])
else:
prn = int(items[0])
addBias = float(items[1])* conversionFactor
self.dict[(prn, 2)] = self.dict[(prn, 1)] + addBias
dataFound = True
except:
continue
if not dataFound:
print('WARNING: No valid data found in %s' % (L2C2BiasFile))
def rinexobs(rinexfile,h5file=None,returnHead=False,writeh5=False):
"""
parses a rinex observation file and puts all the data in a Panel4D, can be
sped up by also providing an h5 file written by Pandas, can write an h5
file if specified and can return header data
inputs:
rinexfile - path to the rinex observation file
h5file - path to the h5 file for speedup
returnHead - Boolean, if true then return the header data first
writeh5 - boolean, if true then write an h5 file with the same path
as the rinex file but ending in .h5 instead
outputs:
header(optional) - header data in a dictionary
data - Panel4D (parameter,satellite number,time,data/lli/ssi)
"""
#open file, get header info, possibly speed up reading data with a premade h5 file
rinexfile = Path(rinexfile).expanduser()
with rinexfile.open('r') as f:
t=time.time()
lines = f.read().splitlines(True)
lines.append('')
header,version,headlines,obstimes,sats,svset = scan(lines)
print('{} is a RINEX {} file, {} kB.'.format(rinexfile,version,rinexfile.stat().st_size/1000))
if h5file==None:
data = processBlocks(lines,header,obstimes,svset,headlines,sats)
else:
data = read_hdf(h5file,key='data')
print("finished in {:.2f} seconds".format(time.time()-t))
#write an h5 file if specified
if writeh5:
h5fn = rinexfile.with_suffix('.h5')
print('saving OBS data to {}'.format(h5fn))
data.to_hdf(h5fn,key='data',mode='w',format='table')
#return info including header if desired
if returnHead:
return header,data
else:
return data
def scan(lines):
"""
this function sets up the rinex file parsing by quickly running through
the file, looking for the line at which each time block starts, the time
of each block, the satellites in view at each time, and overall what
satellites are in the rinex file
inputs:
lines - list containing each line in the rinex file as a string
outputs:
header - all the header info in a dictionary
verRinex - the rinex file's version
headlines - a list of ints, the index of lines where each time block
starts
obstimes - list of times corresponding to each block, same length as
headlines
sats - the satellites in view at each time, should be same length
as headlines
svset - the set of all the satellites in the rinex file
"""
header={}
eoh=0
for i,line in enumerate(lines):
if "END OF HEADER" in line:
eoh=i
break
if line[60:].strip() not in header:
header[line[60:].strip()] = line[:60].strip()
else:
header[line[60:].strip()] += " "+line[:60].strip()
verRinex = float(header['RINEX VERSION / TYPE'].split()[0])
header['APPROX POSITION XYZ'] = [float(i) for i in header['APPROX POSITION XYZ'].split()]
header['# / TYPES OF OBSERV'] = header['# / TYPES OF OBSERV'].split()
header['# / TYPES OF OBSERV'][0] = int(header['# / TYPES OF OBSERV'][0])
header['INTERVAL'] = float(header['INTERVAL'])
headlines=[]
obstimes=[]
sats=[]
svset=set()
i=eoh+1
while True:
if not lines[i]: break
if not int(lines[i][28]):
#no flag or flag=0
headlines.append(i)
obstimes.append(_obstime([lines[i][1:3],lines[i][4:6],
lines[i][7:9],lines[i][10:12],
lines[i][13:15],lines[i][16:26]]))
numsvs = int(lines[i][30:32])
if(numsvs>12):
sp=[]
for s in range(numsvs):
if s==12: i+= 1
sp.append(int(lines[i][33+(s%12)*3:35+(s%12)*3]))
sats.append(sp)
else:
sats.append([int(lines[i][33+s*3:35+s*3]) for s in range(numsvs)])
i+=numsvs*int(np.ceil(header['# / TYPES OF OBSERV'][0]/5))+1
else:
#there was a comment or some header info
flag=int(lines[i][28])
if(flag!=4):
print(flag)
skip=int(lines[i][30:32])
i+=skip+1
for sv in sats:
svset = svset.union(set(sv))
return header,verRinex,headlines,obstimes,sats,svset
def processBlocks(lines,header,obstimes,svset,headlines,sats):
"""
turns the rinex file and the info from scan() into a Panel4D
inputs:
the info from scan(), see scan() above
outputs:
blocks - the Panel4D with all the data, see above for organization
"""
obstypes = header['# / TYPES OF OBSERV'][1:]
blocks = np.nan*np.ones((len(obstypes),max(svset)+1,len(obstimes),3))
for i in range(len(headlines)):
linesinblock = len(sats[i])*int(np.ceil(header['# / TYPES OF OBSERV'][0]/5))
block = ''.join(lines[headlines[i]+1+int(len(sats[i])/13):headlines[i]
+linesinblock+1+int(len(sats[i])/13)])
bdf = _block2df(block,obstypes,sats[i],len(sats[i])) #
blocks[:,np.asarray(sats[i],int),i,:] = bdf
"""
it is way faster to turn a big numpy array into a Panel4D than
to make the Panel4D first and assign it one cell at a time,
Panel4Ds are slow, it is best to use numpy when possible
"""
blocks = Panel4D(blocks,
labels=obstypes,
items=np.arange(max(svset)+1),
major_axis=obstimes,
minor_axis=['data','lli','ssi'])
blocks = blocks[:,list(svset),:,:]
return blocks
def _obstime(fol):
"""
turns a listed date collected from the rinex file into a datetime,
this is just a utility function
"""
year = int(fol[0])
if 80<= year <=99:
year+=1900
elif year<80: #because we might pass in four-digit year
year+=2000
return datetime(year=year, month=int(fol[1]), day= int(fol[2]),
hour= int(fol[3]), minute=int(fol[4]),
second=int(float(fol[5])),
microsecond=int(float(fol[5]) % 1) *100000
)
def _block2df(block,obstypes,svnames,svnum):
"""
input: block of text corresponding to one time increment INTERVAL of RINEX file
output: 2-D array of float64 data from block.
"""
nobs = len(obstypes)
stride=3
strio = BytesIO(block.encode())
barr = np.genfromtxt(strio, delimiter=(14,1,1)*5).reshape((svnum,-1), order='C')
data = barr[:,0:nobs*stride:stride]
lli = barr[:,1:nobs*stride:stride]
ssi = barr[:,2:nobs*stride:stride]
data = np.vstack(([data],[lli],[ssi])).T #4D numpy array
return data
def readRinexNav(fn,writeh5=None):
"""
Michael Hirsch
It may actually be faster to read the entire file via f.read() and then .split()
and asarray().reshape() to the final result, but I did it frame by frame.
http://gage14.upc.es/gLAB/HTML/GPS_Navigation_Rinex_v2.11.html
"""
fn = Path(fn).expanduser()
startcol = 3 #column where numerical data starts
nfloat=19 #number of text elements per float data number
nline=7 #number of lines per record
with fn.open('r') as f:
#find end of header, which has non-constant length
while True:
if 'END OF HEADER' in f.readline(): break
#handle frame by frame
sv = []; epoch=[]; raws=''
while True:
headln = f.readline()
if not headln: break
#handle the header
sv.append(headln[:2])
year = int(headln[2:5])
if 80<= year <=99:
year+=1900
elif year<80: #good till year 2180
year+=2000
epoch.append(datetime(year =year,
month =int(headln[5:8]),
day =int(headln[8:11]),
hour =int(headln[11:14]),
minute =int(headln[14:17]),
second =int(headln[17:20]),
microsecond=int(headln[21])*100000))
"""
now get the data.
Use rstrip() to chomp newlines consistently on Windows and Python 2.7/3.4
Specifically [:-1] doesn't work consistently as .rstrip() does here.
"""
raw = (headln[22:].rstrip() +
''.join(f.readline()[startcol:].rstrip() for _ in range(nline-1))
+f.readline()[startcol:40].rstrip())
raws += raw + '\n'
raws = raws.replace('D','E')
strio = BytesIO(raws.encode())
darr = np.genfromtxt(strio,delimiter=nfloat)
nav= DataFrame(darr, epoch,
['SVclockBias','SVclockDrift','SVclockDriftRate','IODE',
'Crs','DeltaN','M0','Cuc','Eccentricity','Cus','sqrtA','TimeEph',
'Cic','OMEGA','CIS','Io','Crc','omega','OMEGA DOT','IDOT',
'CodesL2','GPSWeek','L2Pflag','SVacc','SVhealth','TGD','IODC',
'TransTime','FitIntvl'])
nav['sv'] = Series(np.asarray(sv,int), index=nav.index)
if writeh5:
h5fn = fn.with_suffix('.h5')
print('saving NAV data to {}'.format(h5fn))
nav.to_hdf(h5fn,key='NAV',mode='a',complevel=6,append=False)
return nav
def readRinexNav3(fn,writeh5=None):
"""
Michael Hirsch
It may actually be faster to read the entire file via f.read() and then .split()
and asarray().reshape() to the final result, but I did it frame by frame.
http://gage14.upc.es/gLAB/HTML/GPS_Navigation_Rinex_v2.11.html
"""
fn = Path(fn).expanduser()
startcol = 4 #column where numerical data starts
nfloat=19 #number of text elements per float data number
nline=7 #number of lines per record
with fn.open('r') as f:
#find end of header, which has non-constant length
while True:
if 'END OF HEADER' in f.readline(): break
#handle frame by frame
sv = []; epoch=[]; raws=''
while True:
headln = f.readline()
if not headln: break
#handle the header
sv.append(headln[1:4].strip())
year = int(headln[4:8])
if 80<= year <=99:
year+=1900
elif year<80: #good till year 2180
year+=2000
epoch.append(datetime(year =year,
month =int(headln[9:11]),
day =int(headln[12:14]),
hour =int(headln[15:17]),
minute =int(headln[18:20]),
second =int(headln[21:23])))
"""
now get the data.
Use rstrip() to chomp newlines consistently on Windows and Python 2.7/3.4
Specifically [:-1] doesn't work consistently as .rstrip() does here.
"""
raw = (headln[24:].rstrip() +
''.join(f.readline()[startcol:].rstrip() for _ in range(nline-1))
+f.readline()[startcol:43].rstrip())
raws += raw + '\n'
raws = raws.replace('D','E')
strio = BytesIO(raws.encode())
darr = np.genfromtxt(strio,delimiter=nfloat)
nav= DataFrame(darr, epoch,
['SVclockBias','SVclockDrift','SVclockDriftRate','IODE',
'Crs','DeltaN','M0','Cuc','Eccentricity','Cus','sqrtA','TimeEph',
'Cic','OMEGA','CIS','Io','Crc','omega','OMEGA DOT','IDOT',
'CodesL2','GPSWeek','L2Pflag','SVacc','SVhealth','TGD','IODC',
'TransTime','FitIntvl'])
nav['sv'] = Series(np.asarray(sv,int), index=nav.index)
if writeh5:
h5fn = fn.with_suffix('.h5')
print('saving NAV data to {}'.format(h5fn))
nav.to_hdf(h5fn,key='NAV',mode='a',complevel=6,append=False)
return nav
def getSatXYZ(nav,sv,times):
"""
getSatelliteXYZ returns the satellite XYZ as a tuple at the inputted times
inputs are rinex navigation data, satellite number, and list of times
Output: tuple of satellite position in ECEF coordinates (X,Y,Z)
Algorithm: Based on http://web.ics.purdue.edu/~ecalais/teaching/geodesy/EAS_591T_2003_lab_4.htm
also based on Bill Rideout's tec.py
"""
allSvInfo = nav[nav['sv']==sv]
timesarray = np.asarray(times,dtype='datetime64[ms]')
navtimes = np.asarray(allSvInfo.index,dtype='datetime64[ms]')
bestephind = np.array([np.argmin(abs(navtimes-t)) for t in timesarray])
info = np.asarray(allSvInfo)[bestephind]
info = DataFrame(info,index=times,columns=allSvInfo.columns)
info['sv'] = sv
info['gpstime'] = np.array([getGpsTime(t) for t in times])
# constants
GM = 3986005.0E8 # universal gravational constant
OeDOT = 7.2921151467E-5
#Basic Parameters
t = info['gpstime']-info['TimeEph']
mu = info['M0']+t*(np.sqrt(GM/info['sqrtA']**6)+info['DeltaN'])
Ek = solveIter(mu,info['Eccentricity'])
Vk = np.asarray(np.arctan2(np.sqrt(1.0-info['Eccentricity'])*np.sin(Ek),
np.cos(Ek)-info['Eccentricity']),float)
PhiK = Vk + info['omega']
#Correct for orbital perturbations
omega = np.asarray(info['omega']+info['Cus']*np.sin(2.0*PhiK)
+info['Cuc']*np.cos(2.0*PhiK),float)
r = np.asarray((info['sqrtA']**2)*(1.0-info['Eccentricity']*np.cos(Ek))
+info['Crs']*np.sin(2.0*PhiK)+info['Crc']*np.cos(2.0*PhiK),float)
i = np.asarray(info['Io']+info['IDOT']*t+info['CIS']*np.sin(2.0*PhiK)
+info['Cic']*np.cos(2.0*PhiK),float)
#Compute the right ascension
Omega = np.asarray(info['OMEGA']+(info['OMEGA DOT']-OeDOT)*t-(OeDOT*info['TimeEph']),float)
#Convert satellite position from orbital frame to ECEF frame
cosOmega = np.cos(Omega)
sinOmega = np.sin(Omega)
cosomega = np.cos(omega)
sinomega = np.sin(omega)
cosi = np.cos(i)
sini = np.sin(i)
cosVk = np.cos(Vk)
sinVk = np.sin(Vk)
R11 = cosOmega*cosomega - sinOmega*sinomega*cosi
R12 = -1.0*cosOmega*sinomega - sinOmega*cosomega*cosi
#R13 = np.sin(Omega)*np.sin(i)
R21 = sinOmega*cosomega + cosOmega*sinomega*cosi
R22 = -1.0*sinOmega*sinomega + cosOmega*cosomega*cosi
#R23 = -1.0*np.cos(Omega)*np.sin(i)
R31 = sinomega*sini
R32 = cosomega*sini
#R33 = np.cos(i)
xyz = np.zeros((len(times),3))
rv = np.column_stack((r*cosVk,r*sinVk,np.zeros(r.shape)))
R = np.empty((rv.shape[0],3,3))
R[:,0,0] = R11
R[:,0,1] = R12
R[:,0,2] = 0
R[:,1,0] = R21
R[:,1,1] = R22
R[:,1,2] = 0
R[:,2,0] = R31
R[:,2,1] = R32
R[:,2,2] = 0
#R = np.array([[R11[i],R12[i],0],
# [R21[i],R22[i],0],
# [R31[i],R32[i],0]])
for i in range(len(times)): #THIS IS THE SLOWEST PART NOW
xyz[i,:] = (R[i,:,:].dot(rv[i,:]))
return xyz
def getGpsTime(dt):
"""_getGpsTime returns gps time (seconds since midnight Sat/Sun) for a datetime
"""
total = 0
days = (dt.weekday()+ 1) % 7 # this makes Sunday = 0, Monday = 1, etc.
total += days*3600*24
total += dt.hour * 3600
total += dt.minute * 60
total += dt.second
return(total)
def solveIter(mu,e):
"""
__solvIter returns an iterative solution for Ek
Mk = Ek - e sin(Ek)
adapted to accept vectors instead of single values
from Bill Rideout's tec.py
"""
thisStart = np.asarray(mu-1.01*e)
thisEnd = np.asarray(mu + 1.01*e)
bestGuess = np.zeros(mu.shape)
for i in range(5):
minErr = 10000*np.ones(mu.shape)
for j in range(5):
thisGuess = thisStart + j*(thisEnd-thisStart)/10.0
thisErr = np.asarray(abs(mu - thisGuess + e*np.sin(thisGuess)))
mask = thisErr<minErr
minErr[mask] = thisErr[mask]
bestGuess[mask] = thisGuess[mask]
# reset for next loop
thisRange = thisEnd - thisStart
thisStart = bestGuess - thisRange/10.0
thisEnd = bestGuess + thisRange/10.0
return(bestGuess)
def getZ(el):
"""
getZ returns the mapping function given elevation in degrees and
fitting parameter.
Now fitting to equation:
1
z = ----------------------------
sqrt(1.0 - (fit * cos(el))^2)
"""
fit = 0.95
term1 = 1 - (fit*np.cos(np.radians(el)))**2
return 1.0 / np.sqrt(term1)
def getZ2(el,recpos):
"""
sqrt( [a+h+s]^2 - [a*cos(el)]^2 ) - sqrt( [a+h]^2 - [a*cos(el)]^2 )
z(el) = ---------------------------------------------------------------------
s
a is height of observing station from earth center in km,
h = 300km is height of ionosphere slab
s = 200km is slab thickness
"""
a = np.linalg.norm(recpos)/1000
h=300
s = 200
Z = (np.sqrt((a+h+s)**2-(a*np.cos(np.radians(el[el>30])))**2)
-np.sqrt((a+h)**2-(a*np.cos(np.radians(el[el>30])))**2))/s
return Z
def minScalErr(stec,el,z,thisBias):
"""
this determines the slope of the vTEC vs. Elevation line, which
should be minimized in the minimum scalloping technique for
receiver bias removal
inputs:
stec - time indexed Series of slant TEC values
el - corresponding elevation values, also Series
z - mapping function values to convert to vTEC from entire file, may
contain nans, Series
thisBias - the bias to be tested and minimized
"""
intel=np.asarray(el[stec.index],int) # bin the elevation values into int
sTEC=np.asarray(stec,float)
zmap = z[stec.index]
c=np.array([(i,np.average((sTEC[intel==i]-thisBias)
/zmap[intel==i])) for i in np.unique(intel) if i>30])
return np.polyfit(c[:,0],c[:,1],1)[0]
def getPP(satpos,sv,recpos,pph,err=1.0):
"""
get az and el to the satellite and repeatedly increase the range,
converting to LLA each time to check the altitude. Stop when all
the altitudes are within err of pph. Inputs satellite position
array in ECEF, satellite number, receiver position in ECEF, pierce point
height in km and error in km if you want.
"""
rlat,rlon,ralt = ecef2geodetic(recpos)
sataz,satel,satr = ecef2aer(satpos[:,0],satpos[:,1],satpos[:,2],rlat,rlon,ralt)
r=np.zeros(len(satr))
pplat,pplon,ppalt = aer2geodetic(sataz,satel,r,rlat,rlon,ralt)
mask = (ppalt/1000 - pph) < 0
while np.sum(mask)>0:
r[mask]+=100
pplat,pplon,ppalt = aer2geodetic(sataz,satel,r*1000,rlat,rlon,ralt)
mask = (ppalt/1000 - pph) < 0
sRange = r - 100.0
eRange = r
count = 0
while not np.all(abs(ppalt/1000-pph)<err):
count +=1
mRange = (sRange + eRange) / 2.0
pplat,pplon,ppalt = aer2geodetic(sataz,satel,mRange*1000,rlat,rlon,ralt)
mask = ppalt/1000>pph
eRange[mask] = mRange[mask]
sRange[~mask] = mRange[~mask]
if(count>100):
raise TypeError('going too long')
break
ppalt = pph*1000
return pplat,pplon,ppalt
def minScalBias(data,recpos):
"""
This function calculates receiver bias via the minimum scalloping
method. The idea is that vertical TEC shouldn't be elevation dependent
so the algorithm tests different bias values to minimuze the slope of the
vTEC vs. elevation line. Outputs the bias averaged from all satellites at
all times in the rinexobs data
inputs: rinexobs data and receiver position in ecef i think
outputs: average bias for the receiver
"""
SvsUsed=0
bias=0
for sv in data.items:
el = data['El',sv,:,'data'][~np.isnan(data['El',sv,:,'data'])]
z = data['zmap',sv,:,'data'][~np.isnan(data['zmap',sv,:,'data'])]
stec = data['TEC',sv,:,'data'][~np.isnan(data['TEC',sv,:,'data'])]
if(len(np.unique(np.asarray(el[el>29],int)))<30): continue
SvsUsed+=1
#FIND SMALLEST ERROR AND WHICH BIAS CORRESPONDS TO IT
err=np.zeros((10,))
for i in range(10):
err[i] = minScalErr(stec[abs(stec)<100],el,z,-50+i*10) #MAKE THE FILTERING MORE CUSTOMIZABLE
startval=-50+np.argmin(abs(err))*10
for i in range(10):
err[i] = minScalErr(stec[abs(stec)<100],el,z,startval-5+i)
startval+=np.argmin(abs(err))-5
for i in range(10):
err[i] = minScalErr(stec[abs(stec)<100],el,z,startval-.5+.1*i)
bias += (np.argmin(abs(err))-5)*.1+startval
return bias/SvsUsed
def GDfromRinex(rinexfile,navfile,satFile,C1BiasFile,h5file=None,writeh5=False,pph=350,satlist=None):
"""
this function goes through the entire process, parses data from rinex,
calculates sTEC, vTEC, satellite position, pierce point, receiver bias,
etc. and turns it all into a GeoData object for plotting and stuff
"""
head,data = rinexobs(rinexfile,returnHead=True,h5file=h5file,writeh5=writeh5)
nav = readRinexNav(navfile)
svBiasObj = satelliteBias(satFile,C1BiasFile,None)
extra = np.nan*np.ones((14,data.shape[1],data.shape[2],data.shape[3]))
recpos = np.asarray(head['APPROX POSITION XYZ'],float)[:,None]
rlat,rlon,ralt = ecef2geodetic(recpos)
print('sv',end=': ')
for sv in data.items:
print(sv,end=' ')
if((sv,1) not in svBiasObj.dict): continue
satbias = svBiasObj.dict[(sv,1)]
#get time intervals, points where there is good tec
ranges = getIntervals(data,sv)
teclist = []
timelist = []
errlist=[]
rbeg=[]
pos=0
for drange in ranges:
rbeg.append(pos)
tec,err = getTec(data,sv,drange)
tec-=satbias
teclist.append(tec)
timelist.append(tec.index)
errlist.append(err*np.ones(len(tec)))
pos+=len(tec)
if len(teclist)==0 or len(timelist)==0:
continue
stec = Series(np.hstack((p for p in teclist)),index=np.hstack((t for t in timelist)))
ntec = Series(np.hstack((j for j in errlist)),index=np.hstack((t for t in timelist)))
for i,p in enumerate(rbeg):
rbeg[i]-=np.sum(np.isnan(stec[:p]))
rbeg=np.array(rbeg)
ntec = ntec[~np.isnan(stec)]
stec = stec[~np.isnan(stec)]
satpos = getSatXYZ(nav,sv,stec.index)
az,el,r = ecef2aer(satpos[:,0],satpos[:,1],satpos[:,2],rlat,rlon,ralt)
satpossph = np.vstack([az,el,r/1000]).T
goodtimes = np.in1d(data.major_axis,stec.index) #times for satellite with data
svi = list(data.items).index(sv) # matrix column corresponding to satellite
extra[:3,svi,goodtimes,0] = satpos.T #XYZ
extra[3:6,svi,goodtimes,0] = satpossph.T #Spherical
extra[6,svi,goodtimes,0] = stec.values #TEC
z = getZ(satpossph[:,1])
extra[7,svi,goodtimes,0] = z #vertical mapping function
pplat,pplon,ppalt = getPP(satpos,sv,recpos,pph) #Pierce Point
extra[8,svi,goodtimes,0] = pplat
extra[9,svi,goodtimes,0] = pplon
extra[10,svi,goodtimes,0] = ppalt
extra[11,svi,goodtimes,0] = ntec.values #err tec
splittimes = np.where(goodtimes)[0][rbeg]
extra[13,svi,splittimes,0] = 1
data['X'] = extra[0]
data['Y'] = extra[1]
data['Z'] = extra[2]
data['Az'] = extra[3]
data['El'] = extra[4]
data['R'] = extra[5]
data['TEC'] = extra[6]
data['zmap'] = extra[7]
data['pplat'] = extra[8]
data['pplon'] = extra[9]
data['ppalt'] = extra[10]
data['nTEC'] = extra[11]
print()
print('recbias',end=': ')
recbias = minScalBias(data,recpos) #calculate receiver bias
extra[6,:,:,0] -= recbias
extra[12,:,:,0] = (extra[6,:,:,0])/extra[7,:,:,0] #vtec
print(recbias)
data['TEC'] = extra[6] #TEC adjusted with receiver bias
data['vTEC'] = extra[12] #vTEC adjusted with receiver bias
data['cslip'] = extra[13]
d = {'TEC':[],'az2sat':[],'el2sat':[],'recBias':[],'satnum':[],
'vTEC':[],'nTEC':[],'lol':[],'raw':[]}
dataloc = []
times = []
if(satlist==None): satlist = data.items
for sv in satlist:
msk = np.isfinite(data['TEC',sv,:,'data']) #mask of times with data
phase = 2.85E9*(data['L1',sv,:,'data']/f1-data['L2',sv,:,'data']/f2)
d['raw'].append(phase[msk])
lol = data[['L1','L2','C1','P2'],sv,msk,'lli']
lol[np.isnan(lol)] = 0
lol = lol.astype(int)
lol = np.logical_or.reduce((lol%2).T)
lol = lol.astype(int) #store all hardware-determined loss of lock as a 1
greg = np.isfinite(data['cslip',sv,msk,'data'].values) #mask of software determined cycle slips
lol[greg] += 2 #add 2 to all times with cycle slips, HW=1, SW=2, both=3
d['lol'].append(lol)
d['TEC'].append(data['TEC',sv,:,'data'][msk])
d['az2sat'].append(data['Az',sv,:,'data'][msk])
d['el2sat'].append(data['El',sv,:,'data'][msk])
d['recBias'].append(recbias*np.ones(len(data['TEC',sv,:,'data'][msk])))
d['satnum'].append(sv*np.ones(len(data['TEC',sv,:,'data'][msk])))
d['vTEC'].append(data['vTEC',sv,:,'data'][msk])
d['nTEC'].append(data['nTEC',sv,:,'data'][msk])
dataloc.append(data[['pplat','pplon','ppalt'],sv,:,'data'][msk])
times.append(np.hstack((data.major_axis[msk][:,None],data.major_axis[msk][:,None]+1000000000)))
d['raw'] = np.hstack(d['raw'])
d['lol'] = np.hstack(d['lol'])
d['TEC'] = np.hstack(d['TEC'])
d['az2sat'] = np.hstack(d['az2sat'])
d['el2sat'] = np.hstack(d['el2sat'])
d['recBias'] = np.hstack(d['recBias'])
d['satnum'] = np.hstack(d['satnum'])
d['vTEC'] = np.hstack(d['vTEC'])
d['nTEC'] = np.hstack(d['nTEC'])
coordnames = 'WGS84'
dataloc = np.vstack(dataloc)
sensorloc = np.nan*np.ones(3)
times = np.vstack(times)
t0 = np.datetime64(datetime(1970,1,1),'ns')
times = (times-t0).astype(float)/1.0E9
return (d,coordnames,dataloc,sensorloc,times)
if __name__== '__main__':
head,data = rinexobs('Examples/data/mah22800.15o',
returnHead=True,writeh5=True)