diff --git a/CHANGELOG.md b/CHANGELOG.md index 29fc0fc639..4b25f89cd5 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -2,6 +2,10 @@ Reference: common-changelog.org +## 1.1.6 - 2023-10-06 + +- Use latest minor versions of Python packages in auto-cite script. + ## 1.1.5 - 2023-05-19 ### Changes diff --git a/CITATION.cff b/CITATION.cff index 6891d10b33..22d406cee3 100644 --- a/CITATION.cff +++ b/CITATION.cff @@ -1,8 +1,8 @@ # citation metadata for the template itself title: "Lab Website Template" -version: 1.1.5 -date-released: 2023-05-19 +version: 1.1.6 +date-released: 2023-10-06 url: "https://github.com/greenelab/lab-website-template" authors: - family-names: "Rubinetti" diff --git a/_cite/.cache/cache.db b/_cite/.cache/cache.db index 8dbc68b0d0..4bbcc12b9f 100644 Binary files a/_cite/.cache/cache.db and b/_cite/.cache/cache.db differ diff --git a/_cite/requirements.txt b/_cite/requirements.txt index ce4f5d2822..9808e76307 100644 --- a/_cite/requirements.txt +++ b/_cite/requirements.txt @@ -1,6 +1,7 @@ -manubot==0.5.5 -PyYAML==6.0 -diskcache==5.4.0 -rich==12.6.0 -python-dotenv==0.21.0 -google-search-results==2.4.1 +manubot~=0.6 +PyYAML~=6.0 +diskcache~=5.6 +rich~=13.6 +python-dotenv~=0.21 +google-search-results~=2.4 + diff --git a/_data/citations.yaml b/_data/citations.yaml index 5e11a55c76..0cc985a539 100644 --- a/_data/citations.yaml +++ b/_data/citations.yaml @@ -42,6 +42,28 @@ orcid: 0000-0002-4655-3773 plugin: orcid.py file: orcid.yaml +- id: doi:10.1093/gigascience/giad047 + title: Hetnet connectivity search provides rapid insights into how biomedical entities + are related + authors: + - Daniel S Himmelstein + - Michael Zietz + - Vincent Rubinetti + - Kyle Kloster + - Benjamin J Heil + - Faisal Alquaddoomi + - Dongbo Hu + - David N Nicholson + - Yun Hao + - Blair D Sullivan + - Michael W Nagle + - Casey S Greene + publisher: GigaScience + date: '2022-12-28' + link: https://doi.org/gsd85n + orcid: 0000-0002-4655-3773 + plugin: orcid.py + file: orcid.yaml - id: doi:10.1186/s13059-020-02021-3 title: Compressing gene expression data using multiple latent space dimensionalities learns complementary biological representations