-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathget_pseudo_sdrf.py
342 lines (302 loc) · 13 KB
/
get_pseudo_sdrf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import json
import logging
import os
import re
import pickle
import pprint
import urllib.request
from datetime import datetime
# SSL workaround in Python 3, see more details at:
# https://stackoverflow.com/a/49174340
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
# Some notes about how to invoke this code for particular purposes:
#
# This will retrieve a list of URLs for only the .sdrf.txt files that have
# corresponding .raw data available
# > python -c "from get_pseudo_sdrf import *; get_sdrf_urls()" | egrep "^has" | cut -f 2
#
# This will download all available .sdrf.txt files into a directory named
# 'data-20150518' (and create the directory if needed)
# > python -c "from get_pseudo_sdrf import *; download_sdrf_to_dir('data-20150518')"
#
# This will download experiments matching the list supplied from all available
# .sdrf.txt files into a directory named 'data-20151002-subset' (and create the
# directory if needed)
# > python -c "from get_pseudo_sdrf import *; download_sdrf_to_dir('data-20151002-subset', experiment_list = ['E-GEOD-46947', 'E-MEXP-2396', 'E-MEXP-87'])"
#
# This will download only .sdrf.txt files with a companion raw file into a
# directory named 'data-20150521'
# > python -c "from get_pseudo_sdrf import *; download_sdrf_to_dir('data-20150521-haveraw', skip_experiments_without_raw_file=True)"
#
# This will retrieve a list of URLs for all .raw data available and print it
# (drop-compatible with the original get_pseudo.py)
# > python get_pseudo_sdrf.py
#
# This will retrieve ArrayExpress json experiment data and output a list of
# text fields for each experiment
# > python -c "from get_pseudo_sdrf import *; get_experiment_text()"
#
# This will print the contents of the JSON cache (cache will instantiate itself
# with defaults first, if needed)
# > python -c "from get_pseudo_sdrf import *; jc = JSON_cache(); jc.print_cache(full_dump=True)"
#
# This will print a summary of the JSON cache (cache will instantiate itself
# with defaults first, if needed)
# > python -c "from get_pseudo_sdrf import *; jc = JSON_cache(); jc.print_cache()"
# Define some known ArrayExpress URLs
_AEURL_FILES = "http://www.ebi.ac.uk/arrayexpress/json/v2/files?array=A-AFFY-30"
_AEURL_EXPERIMENTS = "http://www.ebi.ac.uk/arrayexpress/json/v2/"\
"experiments?species=%22Pseudomonas%22"
def main():
"""
Preserve the original function of get_pseudo.py by doing the same thing when
running get_pseudo_sdrf.py
"""
r = AERetriever()
r.get_raw_urls()
def get_sdrf_urls():
"""
Convenience function for retrieving a list of URLs for all .sdrf.txt files
"""
r = AERetriever()
r.get_sdrf_urls()
def download_sdrf_to_dir(
dir_name, skip_experiments_without_raw_file=False,
experiment_list=None):
""" Convenience function for downloading .sdrf.txt files to 'dir_name' """
logging.basicConfig(level=logging.INFO)
logging.info("Experiment list: %s" % experiment_list)
r = AERetriever()
r.download_sdrf_to_dir(
dir_name, skip_experiments_without_raw_file, experiment_list)
def get_experiment_text():
"""
Convenience function for retrieving ArrayExpress json data and outputting
experiment text
"""
r = AERetriever(ae_url=_AEURL_EXPERIMENTS)
# print(r.ae_json_to_experiment_text())
expts = r.ae_json_to_experiment_text()
for e in expts:
print(e['name'].encode('utf-8'))
class AERetriever(object):
"""
A collection of utility routines for retrieving and parsing pseudomonas
experiment data from ArrayExpress. JSON responses from ArrayExpress are
saved locally in a cache for efficent access.
"""
def __init__(self, ae_url=_AEURL_FILES, cache_file_name=None):
super(AERetriever, self).__init__()
self.arrexp_url = ae_url
if not cache_file_name:
self.JSON_cache = JSON_cache()
else:
self.JSON_cache = JSON_cache(file_name=cache_file_name)
self.data_jsonstr = self.get_ae_json()
# need to initialize url_dict using only the ArrayExpress files JSON (probably cached)
self.url_dict = self.ae_json_to_urls(self.get_ae_json(_AEURL_FILES))
def get_raw_urls(self):
"""
Retrieve a list of URLs for downloading raw CEL files for each
pseudomonas-related experiment on ArrayExpress
"""
for exp_urls in self.url_dict:
if exp_urls['raw_urls']:
# print all of the raw urls found for this experiment
for raw_url in exp_urls['raw_urls']:
print(raw_url)
def get_sdrf_urls(self):
"""
Retrieve a list of URLs for downloading .sdrf.txt files for each
pseudomonas-related experiment on ArrayExpress. Annotate the list with
a note indicating if there are any raw files for this experiment.
"""
for exp_urls in self.url_dict:
has_raw_str = "has raw" if exp_urls['raw_urls'] else "no raw"
print("%s\t%s" % (has_raw_str, exp_urls['sdrf_url']))
def download_sdrf_to_dir(
self, dir_name,
skip_experiments_without_raw_file=False, experiment_list=None):
"""
Download all of the .sdrf.txt files into directory dir_name for later
use. If dir_name does not already exist, create it.
If skip_experiments_without_raw_file is True, don't download those
files. If experiment_list is supplied, filter the .sdrf.txt files so
only experiments with names matching those on the list are downloaded.
"""
if not os.path.isdir(dir_name):
os.mkdir(dir_name)
for exp_urls in self.url_dict:
if skip_experiments_without_raw_file and not exp_urls['raw_urls']:
continue
# parse out a file name from the URL, then write each file
m = re.search(
r'.*/(?P<f_name>(?P<e_name>.*)\.sdrf\.txt)',
exp_urls['sdrf_url'])
if not m:
raise RuntimeError(
'Could not parse .sdrf.txt file name from sdrf URL')
f_name = m.group('f_name')
e_name = m.group('e_name')
if experiment_list is not None:
if e_name not in experiment_list:
continue
with open("%s/%s" % (dir_name, f_name), 'wb') as f_out:
logging.info(
"Experiment %s: retrieving %s..." % (e_name, f_name)
)
sdrf_uh = urllib.request.urlopen(exp_urls['sdrf_url'])
sdrf_data = sdrf_uh.read()
sdrf_uh.close()
f_out.write(sdrf_data)
def get_ae_json(self, ae_url=None):
"""
Obtain all pseudomonas-related data from the JSON interface to
ArrayExpress
Returns: a raw JSON string from the ArrayExpress JSON interface
"""
if not ae_url: ae_url = self.arrexp_url
ae_json_str = self.JSON_cache.get_jsonstr(ae_url)
return(ae_json_str)
def ae_json_to_urls(self, ae_json_str):
"""
Parse the JSON response from ArrayExpress and extract the URL for raw
data and for sdrf.txt
Parse the JSON response from ArrayExpress for raw and sdrf files and
return a list of URLs for raw CEL and sdrf.txt files to download for
experiment details.
Returns: a list of dictionaries with keys 'raw_urls' and 'sdrf_url'.
"""
data = json.loads(ae_json_str)
# extract a list of URLs for raw files and .sdrf.txt files
url_list = []
for experiment in data['files']['experiment']:
files = experiment['file']
raw_urls = []
sdrf_url = None
for fobj in files:
# Loop through the entire list of files and extract what we want
# NOTE: this code assumes at most one sdrf.txt file exists per
# entry (but zero or more raw files may exist)
if fobj['kind'] == 'raw':
raw_urls.append(fobj['url'])
if fobj['kind'] == 'sdrf' and fobj['extension'] == 'txt':
sdrf_url = fobj['url']
url_list.append({'raw_urls': raw_urls, 'sdrf_url': sdrf_url})
return(url_list)
def ae_json_to_experiment_text(self, ae_json_str=None):
"""
Parse a JSON response from ArrayExpress and extract text that describes
each experiment. If no ae_json_str is supplied, assume that
self.arrexp_url is what we want to retrieve.
Returns: a list of dictionaries with keys 'accession', 'name' and
'description'.
"""
# FIXME: it's potentially confusing that we've got sdrf parsing and
# experiment data parsing together
if not ae_json_str: ae_json_str = self.get_ae_json(self.arrexp_url)
data = json.loads(ae_json_str)
# extract a list of URLs for raw files and .sdrf.txt files
experiment_text = []
for experiment in data['experiments']['experiment']:
experiment_text.append({
'accession': experiment['accession'],
'name': experiment['name'],
'description':
self._scrub_description(experiment['description']['text']),
})
return(experiment_text)
def _scrub_description(self, desc):
"""
if the ArrayExpress description text is a list rather than string, we
have to piece it back together without the broken HTML markup
Returns: properly concatenated unicode text for each description
"""
if isinstance(desc, list):
desc_text = []
for section in desc:
if isinstance(section, str):
desc_text.append(section)
elif isinstance(section, dict):
if section == {u'br': None}: continue
try:
desc_text.append(section['a']['$'])
except Exception as e:
logging.warn(
'Could not scrub this text: {:s}'.format(desc))
raise e
return(''.join(desc_text))
elif isinstance(desc, str):
return(desc)
class JSON_cache(object):
""" maintain a cache of JSON strings indexed by retrieval URL """
# number of seconds to keep cached data before refreshing
REFRESH_INTERVAL = 24 * 60 * 60
def __init__(self, file_name=".json_cache", refresh=REFRESH_INTERVAL):
super(JSON_cache, self).__init__()
self.file_name = file_name
self.refresh = refresh
if os.path.exists(self.file_name):
_fr = open(self.file_name, 'rb')
self._json_cache = pickle.load(_fr)
_fr.close()
else:
_fw = open(self.file_name, 'wb')
self.flush_cache(_fw)
_fw.close()
def populate_cache(self, url):
"""
retrieve json data from URL and use it to populate our cache
Returns: the JSON data that was retrieved
"""
json_uh = urllib.request.urlopen(url)
jsonstr = json_uh.read()
json_uh.close()
self._json_cache[url] = {
'cachedate': datetime.today(),
'jsonstr': jsonstr,
}
pickle.dump(self._json_cache, open(self.file_name, 'wb'))
return jsonstr
def get_jsonstr(self, url):
"""
retrieve json string from the cache, if available, otherwise download it
"""
if url not in self._json_cache:
logging.info("url <%s> not in cache. fetching..." % url)
jsonstr = self.populate_cache(url)
else:
cachedict = self._json_cache[url]
if (datetime.today() - cachedict['cachedate']).total_seconds() > \
self.refresh:
# old data: refresh the cache
logging.debug(
"old data (%s): refreshing the cache" % \
(datetime.today() - cachedict['cachedate']).total_seconds())
jsonstr = self.populate_cache(url)
else:
logging.debug(
"cache is still fresh (%s)" % \
(datetime.today() - cachedict['cachedate']).total_seconds())
jsonstr = cachedict['jsonstr']
return jsonstr
def flush_cache(self, file):
""" purge the entire cache """
self._json_cache = {}
pickle.dump(self._json_cache, file)
def print_cache(self, full_dump=False):
""" print out the cache for examination """
for url, cachedict in self._json_cache.items():
print("url: {0}\ncachedate: {1}\n".format(
url, cachedict['cachedate']
))
if full_dump:
# print(self._json_cache)
print("jsonstr:\n{0}\n".format(
pprint.PrettyPrinter().pformat(
json.loads(cachedict['jsonstr'])
)
))
if __name__ == '__main__':
main()