-
Notifications
You must be signed in to change notification settings - Fork 316
/
Copy pathcapsule_network_svhn.py
271 lines (196 loc) · 9.81 KB
/
capsule_network_svhn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
"""
Dynamic Routing Between Capsules
https://arxiv.org/abs/1710.09829
PyTorch implementation by Kenta Iwasaki @ Gram.AI.
"""
import sys
sys.setrecursionlimit(15000)
import torch
import torch.nn.functional as F
from torch import nn
import numpy as np
BATCH_SIZE = 100
NUM_CLASSES = 10
NUM_EPOCHS = 500
NUM_ROUTING_ITERATIONS = 3
def softmax(input, dim=1):
transposed_input = input.transpose(dim, len(input.size()) - 1)
softmaxed_output = F.softmax(transposed_input.contiguous().view(-1, transposed_input.size(-1)), dim=-1)
return softmaxed_output.view(*transposed_input.size()).transpose(dim, len(input.size()) - 1)
def augmentation(x, max_shift=2):
_, _, height, width = x.size()
h_shift, w_shift = np.random.randint(-max_shift, max_shift + 1, size=2)
source_height_slice = slice(max(0, h_shift), h_shift + height)
source_width_slice = slice(max(0, w_shift), w_shift + width)
target_height_slice = slice(max(0, -h_shift), -h_shift + height)
target_width_slice = slice(max(0, -w_shift), -w_shift + width)
shifted_image = torch.zeros(*x.size())
shifted_image[ :, :, source_height_slice, source_width_slice] = x[:, :, target_height_slice, target_width_slice]
return shifted_image.float()
class CapsuleLayer(nn.Module):
def __init__(self, num_capsules, num_route_nodes, in_channels, out_channels, kernel_size=None, stride=None,
num_iterations=NUM_ROUTING_ITERATIONS):
super(CapsuleLayer, self).__init__()
self.num_route_nodes = num_route_nodes
self.num_iterations = num_iterations
self.num_capsules = num_capsules
if num_route_nodes != -1:
self.route_weights = nn.Parameter(torch.randn(num_capsules, num_route_nodes, in_channels, out_channels))
else:
self.capsules = nn.ModuleList(
[nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=0) for _ in
range(num_capsules)])
def squash(self, tensor, dim=-1):
squared_norm = (tensor ** 2).sum(dim=dim, keepdim=True)
scale = squared_norm / (1 + squared_norm)
return scale * tensor / torch.sqrt(squared_norm)
def forward(self, x):
if self.num_route_nodes != -1:
priors = x[None, :, :, None, :] @ self.route_weights[:, None, :, :, :]
logits = Variable(torch.zeros(*priors.size())).cuda()
for i in range(self.num_iterations):
probs = softmax(logits, dim=2)
outputs = self.squash((probs * priors).sum(dim=2, keepdim=True))
if i != self.num_iterations - 1:
delta_logits = (priors * outputs).sum(dim=-1, keepdim=True)
logits = logits + delta_logits
else:
outputs = [capsule(x).view(x.size(0), -1, 1) for capsule in self.capsules]
outputs = torch.cat(outputs, dim=-1)
outputs = self.squash(outputs)
return outputs
class CapsuleNet(nn.Module):
def __init__(self):
super(CapsuleNet, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=256, kernel_size=9, stride=1)
self.primary_capsules = CapsuleLayer(num_capsules=8, num_route_nodes=-1, in_channels=256, out_channels=32,
kernel_size=9, stride=2)
self.digit_capsules = CapsuleLayer(num_capsules=NUM_CLASSES, num_route_nodes=2048, in_channels=8,
out_channels=16)
self.decoder = nn.Sequential(
nn.Linear(16 * NUM_CLASSES, 512),
nn.ReLU(inplace=True),
nn.Linear(512, 1024),
nn.ReLU(inplace=True),
nn.Linear(1024, 3072),
nn.Sigmoid()
)
def forward(self, x, y=None):
x = F.relu(self.conv1(x), inplace=True)
x = self.primary_capsules(x)
x = self.digit_capsules(x).squeeze().transpose(0, 1)
classes = (x ** 2).sum(dim=-1) ** 0.5
classes = F.softmax(classes, dim=-1)
if y is None:
# In all batches, get the most active capsule.
_, max_length_indices = classes.max(dim=1)
y = Variable(torch.eye(NUM_CLASSES)).cuda().index_select(dim=0, index=max_length_indices.data)
reconstructions = self.decoder((x * y[:, :, None]).view(x.size(0), -1))
return classes, reconstructions
class CapsuleLoss(nn.Module):
def __init__(self):
super(CapsuleLoss, self).__init__()
self.reconstruction_loss = nn.MSELoss(size_average=False)
def forward(self, images, labels, classes, reconstructions):
left = F.relu(0.9 - classes, inplace=True) ** 2
right = F.relu(classes - 0.1, inplace=True) ** 2
margin_loss = labels * left + 0.5 * (1. - labels) * right
margin_loss = margin_loss.sum()
assert torch.numel(images) == torch.numel(reconstructions)
images = images.view(reconstructions.size()[0], -1)
reconstruction_loss = self.reconstruction_loss(reconstructions, images)
return (margin_loss + 0.0005 * reconstruction_loss) / images.size(0)
if __name__ == "__main__":
from torch.autograd import Variable
from torch.optim import Adam
from torchnet.engine import Engine
from torchnet.logger import VisdomPlotLogger, VisdomLogger
from torchvision.utils import make_grid
from torchvision.datasets.svhn import SVHN
from tqdm import tqdm
import torchnet as tnt
model = CapsuleNet()
# model.load_state_dict(torch.load('epochs/epoch_327.pt'))
model.cuda()
print("# parameters:", sum(param.numel() for param in model.parameters()))
optimizer = Adam(model.parameters())
engine = Engine()
meter_loss = tnt.meter.AverageValueMeter()
meter_accuracy = tnt.meter.ClassErrorMeter(accuracy=True)
confusion_meter = tnt.meter.ConfusionMeter(NUM_CLASSES, normalized=True)
train_loss_logger = VisdomPlotLogger('line', opts={'title': 'Train Loss'})
train_error_logger = VisdomPlotLogger('line', opts={'title': 'Train Accuracy'})
test_loss_logger = VisdomPlotLogger('line', opts={'title': 'Test Loss'})
test_accuracy_logger = VisdomPlotLogger('line', opts={'title': 'Test Accuracy'})
confusion_logger = VisdomLogger('heatmap', opts={'title': 'Confusion matrix',
'columnnames': list(range(NUM_CLASSES)),
'rownames': list(range(NUM_CLASSES))})
ground_truth_logger = VisdomLogger('image', opts={'title': 'Ground Truth'})
reconstruction_logger = VisdomLogger('image', opts={'title': 'Reconstruction'})
capsule_loss = CapsuleLoss()
def get_iterator(mode):
if mode is True:
dataset = SVHN(root='./data', download=True, split="train")
elif mode is False:
dataset = SVHN(root='./data', download=True, split="test")
data = dataset.data
labels = dataset.labels
tensor_dataset = tnt.dataset.TensorDataset([data, labels])
return tensor_dataset.parallel(batch_size=BATCH_SIZE, num_workers=4, shuffle=mode)
def processor(sample):
data, labels, training = sample
data = augmentation(data)
labels = torch.LongTensor(labels)
labels = torch.eye(NUM_CLASSES).index_select(dim=0, index=labels)
data = Variable(data).cuda()
labels = Variable(labels).cuda()
if training:
classes, reconstructions = model(data, labels)
else:
classes, reconstructions = model(data)
loss = capsule_loss(data, labels, classes, reconstructions)
return loss, classes
def reset_meters():
meter_accuracy.reset()
meter_loss.reset()
confusion_meter.reset()
def on_sample(state):
state['sample'].append(state['train'])
def on_forward(state):
meter_accuracy.add(state['output'].data, torch.LongTensor(state['sample'][1]))
confusion_meter.add(state['output'].data, torch.LongTensor(state['sample'][1]))
meter_loss.add(state['loss'].item())
def on_start_epoch(state):
reset_meters()
state['iterator'] = tqdm(state['iterator'])
def on_end_epoch(state):
print('[Epoch %d] Training Loss: %.4f (Accuracy: %.2f%%)' % (
state['epoch'], meter_loss.value()[0], meter_accuracy.value()[0]))
train_loss_logger.log(state['epoch'], meter_loss.value()[0])
train_error_logger.log(state['epoch'], meter_accuracy.value()[0])
reset_meters()
engine.test(processor, get_iterator(False))
test_loss_logger.log(state['epoch'], meter_loss.value()[0])
test_accuracy_logger.log(state['epoch'], meter_accuracy.value()[0])
confusion_logger.log(confusion_meter.value())
print('[Epoch %d] Testing Loss: %.4f (Accuracy: %.2f%%)' % (
state['epoch'], meter_loss.value()[0], meter_accuracy.value()[0]))
torch.save(model.state_dict(), 'epochs/epoch_%d.pt' % state['epoch'])
# Reconstruction visualization.
test_sample = next(iter(get_iterator(False)))
ground_truth = (test_sample[0])
_, reconstructions = model(Variable(ground_truth).cuda())
reconstruction = reconstructions.cpu().view_as(ground_truth).data
ground_truth_logger.log(
make_grid(ground_truth, nrow=int(BATCH_SIZE ** 0.5), normalize=True, range=(0, 1)).numpy())
reconstruction_logger.log(
make_grid(reconstruction, nrow=int(BATCH_SIZE ** 0.5), normalize=True, range=(0, 1)).numpy())
# def on_start(state):
# state['epoch'] = 327
#
# engine.hooks['on_start'] = on_start
engine.hooks['on_sample'] = on_sample
engine.hooks['on_forward'] = on_forward
engine.hooks['on_start_epoch'] = on_start_epoch
engine.hooks['on_end_epoch'] = on_end_epoch
engine.train(processor, get_iterator(True), maxepoch=NUM_EPOCHS, optimizer=optimizer)