forked from robertmartin8/PyPortfolioOpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexamples.py
181 lines (161 loc) · 4.22 KB
/
examples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import pandas as pd
import numpy as np
import cvxpy as cp
from pypfopt import risk_models
from pypfopt import expected_returns
from pypfopt import EfficientFrontier
from pypfopt import objective_functions
from pypfopt.discrete_allocation import DiscreteAllocation, get_latest_prices
from pypfopt import HRPOpt
from pypfopt import CLA
from pypfopt import black_litterman
from pypfopt import BlackLittermanModel
from pypfopt import plotting
# Reading in the data; preparing expected returns and a risk model
df = pd.read_csv("tests/resources/stock_prices.csv", parse_dates=True, index_col="date")
returns = df.pct_change().dropna()
mu = expected_returns.mean_historical_return(df)
S = risk_models.sample_cov(df)
# Now try with a nonconvex objective from Kolm et al (2014)
def deviation_risk_parity(w, cov_matrix):
diff = w * np.dot(cov_matrix, w) - (w * np.dot(cov_matrix, w)).reshape(-1, 1)
return (diff ** 2).sum().sum()
ef = EfficientFrontier(mu, S)
weights = ef.nonconvex_objective(deviation_risk_parity, ef.cov_matrix)
ef.portfolio_performance(verbose=True)
"""
Expected annual return: 22.9%
Annual volatility: 19.2%
Sharpe Ratio: 1.09
"""
# Black-Litterman
spy_prices = pd.read_csv(
"tests/resources/spy_prices.csv", parse_dates=True, index_col=0, squeeze=True
)
delta = black_litterman.market_implied_risk_aversion(spy_prices)
mcaps = {
"GOOG": 927e9,
"AAPL": 1.19e12,
"FB": 574e9,
"BABA": 533e9,
"AMZN": 867e9,
"GE": 96e9,
"AMD": 43e9,
"WMT": 339e9,
"BAC": 301e9,
"GM": 51e9,
"T": 61e9,
"UAA": 78e9,
"SHLD": 0,
"XOM": 295e9,
"RRC": 1e9,
"BBY": 22e9,
"MA": 288e9,
"PFE": 212e9,
"JPM": 422e9,
"SBUX": 102e9,
}
prior = black_litterman.market_implied_prior_returns(mcaps, delta, S)
# 1. SBUX will drop by 20%
# 2. GOOG outperforms FB by 10%
# 3. BAC and JPM will outperform T and GE by 15%
views = np.array([-0.20, 0.10, 0.15]).reshape(-1, 1)
picking = np.array(
[
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
[1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, -0.5, 0, 0, 0.5, 0, -0.5, 0, 0, 0, 0, 0, 0, 0, 0.5, 0],
]
)
bl = BlackLittermanModel(S, Q=views, P=picking, pi=prior, tau=0.01)
rets = bl.bl_returns()
ef = EfficientFrontier(rets, S)
ef.max_sharpe()
print(ef.clean_weights())
ef.portfolio_performance(verbose=True)
"""
{'GOOG': 0.2015,
'AAPL': 0.2368,
'FB': 0.0,
'BABA': 0.06098,
'AMZN': 0.17148,
'GE': 0.0,
'AMD': 0.0,
'WMT': 0.0,
'BAC': 0.18545,
'GM': 0.0,
'T': 0.0,
'UAA': 0.0,
'SHLD': 0.0,
'XOM': 0.0,
'RRC': 0.0,
'BBY': 0.0,
'MA': 0.0,
'PFE': 0.0,
'JPM': 0.14379,
'SBUX': 0.0}
Expected annual return: 15.3%
Annual volatility: 28.7%
Sharpe Ratio: 0.46
"""
# Hierarchical risk parity
hrp = HRPOpt(returns)
weights = hrp.optimize()
hrp.portfolio_performance(verbose=True)
print(weights)
plotting.plot_dendrogram(hrp) # to plot dendrogram
"""
Expected annual return: 10.8%
Annual volatility: 13.2%
Sharpe Ratio: 0.66
{'AAPL': 0.022258941278778397,
'AMD': 0.02229402179669211,
'AMZN': 0.016086842079875,
'BABA': 0.07963382071794091,
'BAC': 0.014409222455552262,
'BBY': 0.0340641943824504,
'FB': 0.06272994714663534,
'GE': 0.05519063444162849,
'GM': 0.05557666024185722,
'GOOG': 0.049560084289929286,
'JPM': 0.017675709092515708,
'MA': 0.03812737349732021,
'PFE': 0.07786528342813454,
'RRC': 0.03161528695094597,
'SBUX': 0.039844436656239136,
'SHLD': 0.027113184241298865,
'T': 0.11138956508836476,
'UAA': 0.02711590957075009,
'WMT': 0.10569551148587905,
'XOM': 0.11175337115721229}
"""
# Crticial Line Algorithm
cla = CLA(mu, S)
print(cla.max_sharpe())
cla.portfolio_performance(verbose=True)
plotting.plot_efficient_frontier(cla) # to plot
"""
{'GOOG': 0.020889868669945022,
'AAPL': 0.08867994115132602,
'FB': 0.19417572932251745,
'BABA': 0.10492386821217001,
'AMZN': 0.0644908140418782,
'GE': 0.0,
'AMD': 0.0,
'WMT': 0.0034898157701416382,
'BAC': 0.0,
'GM': 0.0,
'T': 2.4138966206946562e-19,
'UAA': 0.0,
'SHLD': 0.0,
'XOM': 0.0005100736411646903,
'RRC': 0.0,
'BBY': 0.05967818998203106,
'MA': 0.23089949598834422,
'PFE': 0.19125123325029705,
'JPM': 0.0,
'SBUX': 0.041010969970184656}
Expected annual return: 32.5%
Annual volatility: 21.3%
Sharpe Ratio: 1.43
"""