Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Running your code guide #3

Open
chrisbetz opened this issue Jan 26, 2015 · 7 comments
Open

Running your code guide #3

chrisbetz opened this issue Jan 26, 2015 · 7 comments

Comments

@chrisbetz
Copy link
Contributor

Extend guides section by having a documentation on how to deploy your system

  • locally
  • to a Spark Cluster
  • to YARN
  • to MESOS (sorry, no experience with that, this will be left out in the first version of the guide)
@prasincs
Copy link

The mesos portion is fairly straightforward too -- I did that in the process of verifying Sparkling. You just have to change the master url to the mesos one, and rest is well, setting up a Mesos cluster and there are pretty good tutorials elsewhere for that part.

I suggest the following function for the guide. I haven't tried this on anything other than local and mesos, so it could be different for various environments. For mesos, the master mesos:// url needs to be given. and the cluster-type assigned.

(defn make-spark-context [cluster-type & {:keys [master] :or {master nil}}]
  (let [ get-master #(condp = cluster-type
                       :local "local[*]"
                       :mesos master
                       :yarn master
                       :spark-cluster master)
          c (-> (conf/spark-conf)
          (conf/master (get-master))
              (conf/app-name "Test")
              (conf/set "spark.executor.uri" "hdfs://namenode/spark/spark-1.3.0-bin-hadoop2.3.tgz")
             )]
    (spark/spark-context c)))

Update: There's a lot of stuff that needs to be done to keep the classes in sync in Mesos case for a realistic guide.

@joefromct
Copy link

is there any example code anywhere that could help me understand what's required to run over a cluster via YARN? The only thing i've come across is a presentation on http://www.slideshare.net/cb.betz/spark-and-clojure-2 slide #56 however there is no samples on how to do this.

What might the (conf/master ) parameters look like?

@erasmas
Copy link

erasmas commented Sep 17, 2015

@joefromct There's nothing special in Spark config for YARN. Here's what I do.

(def spark-conf
  (-> (conf/spark-conf)
      (conf/master (System/getProperty "spark.master" "local[*]"))
      (conf/app-name "my-spark-app")
      ))

Then you build your uberjar and submit as spark-submit --master yarn my-spark-app-standalone.jar ....

@ponimas
Copy link

ponimas commented Oct 8, 2015

is there any way to work in repl on yarn?

@chrisbetz
Copy link
Contributor Author

Hi,

Yes, you can start an nrepl server inside your driver and connect to that.

Cheers,

Chris

Am 08.10.2015 um 10:05 schrieb ponimas [email protected]:

is there any way to work in repl on yarn?


Reply to this email directly or view it on GitHub #3 (comment).

@stevenmccord
Copy link

@chrisbetz I am working to run this in the REPL and set the sparkContext to be a remote standalone cluster, it appears that I can connect to it:

16/08/23 22:30:29 INFO Master: Registering app sparkling-example
16/08/23 22:30:29 INFO Master: Registered app sparkling-example with ID app-20160823223029-0005

However, when it doesn't appear anything is executing or that it fails when it tries to execute and restarts on the work node....

16/08/23 20:51:16 INFO Master: Launching executor app-20160823204841-0003/115 on worker worker-20160823192913-172.17.0.13-36085
16/08/23 20:51:18 INFO Master: Removing executor app-20160823204841-0003/114 because it is EXITED
16/08/23 20:51:18 INFO Master: Launching executor app-20160823204841-0003/116 on worker worker-20160823192922-172.17.0.14-49496
16/08/23 20:51:18 INFO Master: Removing executor app-20160823204841-0003/115 because it is EXITED
16/08/23 20:51:19 INFO Master: Launching executor app-20160823204841-0003/117 on worker worker-20160823192913-172.17.0.13-36085
16/08/23 20:51:21 INFO Master: Removing executor app-20160823204841-0003/117 because it is EXITED

Wasn't sure if anyone else has tried, this or my workflow could be completely wrong, I am try to develop in the repl against a remote spark cluster. Thanks!

@stevenmccord
Copy link

stevenmccord commented Aug 24, 2016

OK, a little bit of an update, and just give you a little more context, since I am doing this as I learn a bit more, so apologies if these are dumb questions.

I am starting a repl session and connecting to the remote spark standalone cluster and it can access the driver so you can see the logs below.

16/08/24 18:51:55 INFO Master: Registering app sparkling-example
16/08/24 18:51:55 INFO Master: Registered app sparkling-example with ID app-20160824185155-0001
16/08/24 18:51:55 INFO Master: Launching executor app-20160824185155-0001/0 on worker worker-20160824123619-172.17.0.17-41680
16/08/24 18:51:55 INFO Master: Launching executor app-20160824185155-0001/1 on worker worker-20160824123619-172.17.0.16-57106
16/08/24 18:51:55 INFO ExecutorRunner: Launch command: "/usr/lib/jvm/java-8-openjdk-amd64/bin/java" "-cp" "/opt/spark/conf/:/opt/spark/lib/spark-assembly-1.5.2-hadoop2.6.0.jar:/opt/spark/lib/datanucleus-rdbms-3.2.9.jar:/opt/spark/lib/datanucleus-api-jdo-3.2.6.jar:/opt/spark/lib/datanucleus-core-3.2.10.jar" "-Xms1024M" "-Xmx1024M" "-Dspark.driver.port=53502" "org.apache.spark.executor.CoarseGrainedExecutorBackend" "--driver-url" "akka.tcp://[email protected]:53502/user/CoarseGrainedScheduler" "--executor-id" "1" "--hostname" "172.17.0.16" "--cores" "2" "--app-id" "app-20160824185155-0001" "--worker-url" "akka.tcp://[email protected]:57106/user/Worker"

I have gotten past the error in the comment I posted before, so it isn't restarting, but now when I try to do (spark/first data) I am getting getting the error below. Any help would be great. Thanks!

2. Unhandled org.apache.spark.SparkException
   Job aborted due to stage failure: Task 0 in stage 0.0 failed 4
   times, most recent failure: Lost task 0.3 in stage 0.0 (TID 3,
   172.17.0.17): java.lang.IllegalStateException: unread block data at
   java.io.ObjectInputStream$BlockDataInputStream.setBlockDataMode(ObjectInputStream.java:2431)
   at
   java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1383)
   at
   java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:2000)
   at
   java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1924)
   at
   java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801)
   at
   java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351)
   at java.io.ObjectInputStream.readObject(ObjectInputStream.java:371)
   at
   org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:72)
   at
   org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:98)
   at
   org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:194)
   at
   java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
   at
   java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
   at java.lang.Thread.run(Thread.java:745)

   Driver stacktrace:

            DAGScheduler.scala: 1283  org.apache.spark.scheduler.DAGScheduler/org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages
            DAGScheduler.scala: 1271  org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1/apply
            DAGScheduler.scala: 1270  org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1/apply
          ResizableArray.scala:   59  scala.collection.mutable.ResizableArray$class/foreach
             ArrayBuffer.scala:   47  scala.collection.mutable.ArrayBuffer/foreach
            DAGScheduler.scala: 1270  org.apache.spark.scheduler.DAGScheduler/abortStage
            DAGScheduler.scala:  697  org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1/apply
            DAGScheduler.scala:  697  org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1/apply
                  Option.scala:  236  scala.Option/foreach
            DAGScheduler.scala:  697  org.apache.spark.scheduler.DAGScheduler/handleTaskSetFailed
            DAGScheduler.scala: 1496  org.apache.spark.scheduler.DAGSchedulerEventProcessLoop/doOnReceive
            DAGScheduler.scala: 1458  org.apache.spark.scheduler.DAGSchedulerEventProcessLoop/onReceive
            DAGScheduler.scala: 1447  org.apache.spark.scheduler.DAGSchedulerEventProcessLoop/onReceive
               EventLoop.scala:   48  org.apache.spark.util.EventLoop$$anon$1/run
            DAGScheduler.scala:  567  org.apache.spark.scheduler.DAGScheduler/runJob
            SparkContext.scala: 1822  org.apache.spark.SparkContext/runJob
            SparkContext.scala: 1835  org.apache.spark.SparkContext/runJob
            SparkContext.scala: 1848  org.apache.spark.SparkContext/runJob
                     RDD.scala: 1298  org.apache.spark.rdd.RDD$$anonfun$take$1/apply
       RDDOperationScope.scala:  147  org.apache.spark.rdd.RDDOperationScope$/withScope
       RDDOperationScope.scala:  108  org.apache.spark.rdd.RDDOperationScope$/withScope
                     RDD.scala:  306  org.apache.spark.rdd.RDD/withScope
                     RDD.scala: 1272  org.apache.spark.rdd.RDD/take
                     RDD.scala: 1312  org.apache.spark.rdd.RDD$$anonfun$first$1/apply
       RDDOperationScope.scala:  147  org.apache.spark.rdd.RDDOperationScope$/withScope
       RDDOperationScope.scala:  108  org.apache.spark.rdd.RDDOperationScope$/withScope
                     RDD.scala:  306  org.apache.spark.rdd.RDD/withScope
                     RDD.scala: 1311  org.apache.spark.rdd.RDD/first
             JavaRDDLike.scala:  510  org.apache.spark.api.java.JavaRDDLike$class/first
             JavaRDDLike.scala:   47  org.apache.spark.api.java.AbstractJavaRDDLike/first
 NativeMethodAccessorImpl.java:   -2  sun.reflect.NativeMethodAccessorImpl/invoke0
 NativeMethodAccessorImpl.java:   62  sun.reflect.NativeMethodAccessorImpl/invoke
DelegatingMethodAccessorImpl.java:   43  sun.reflect.DelegatingMethodAccessorImpl/invoke
                   Method.java:  498  java.lang.reflect.Method/invoke
                Reflector.java:   93  clojure.lang.Reflector/invokeMatchingMethod
                Reflector.java:   28  clojure.lang.Reflector/invokeInstanceMethod
                      core.clj:  541  sparkling.core/first
                      core.clj:  541  sparkling.core/first
                          REPL:   14  tf-idf.core/eval9903
                          REPL:   14  tf-idf.core/eval9903
                 Compiler.java: 6927  clojure.lang.Compiler/eval
                 Compiler.java: 6890  clojure.lang.Compiler/eval
                      core.clj: 3105  clojure.core/eval
                      core.clj: 3101  clojure.core/eval
                      main.clj:  240  clojure.main/repl/read-eval-print/fn
                      main.clj:  240  clojure.main/repl/read-eval-print
                      main.clj:  258  clojure.main/repl/fn
                      main.clj:  258  clojure.main/repl
                      main.clj:  174  clojure.main/repl
                   RestFn.java: 1523  clojure.lang.RestFn/invoke
        interruptible_eval.clj:   87  clojure.tools.nrepl.middleware.interruptible-eval/evaluate/fn
                      AFn.java:  152  clojure.lang.AFn/applyToHelper
                      AFn.java:  144  clojure.lang.AFn/applyTo
                      core.clj:  646  clojure.core/apply
                      core.clj: 1881  clojure.core/with-bindings*
                      core.clj: 1881  clojure.core/with-bindings*
                   RestFn.java:  425  clojure.lang.RestFn/invoke
        interruptible_eval.clj:   85  clojure.tools.nrepl.middleware.interruptible-eval/evaluate
        interruptible_eval.clj:   55  clojure.tools.nrepl.middleware.interruptible-eval/evaluate
        interruptible_eval.clj:  222  clojure.tools.nrepl.middleware.interruptible-eval/interruptible-eval/fn/fn
        interruptible_eval.clj:  190  clojure.tools.nrepl.middleware.interruptible-eval/run-next/fn
                      AFn.java:   22  clojure.lang.AFn/run
       ThreadPoolExecutor.java: 1142  java.util.concurrent.ThreadPoolExecutor/runWorker
       ThreadPoolExecutor.java:  617  java.util.concurrent.ThreadPoolExecutor$Worker/run
                   Thread.java:  745  java.lang.Thread/run

My goal is to have a repl-based development environment, but I would be attaching to spark cluster outside of the JVM. It appears that I have the connections right, and the cluster is able to communicate to the spark driver in the REPL, but it seems when I try to evaluate the lazy RDDs it fails on me. I am trying to avoid having to compile a jar, submit it to the local spark cluster, etc. If I could do it in the REPL environment my workflow would be much faster. I definitely am using the local context in the REPL and that is fine, but I also desire to connect to a remote spark cluster as well. Anyway, really appreciate any help you can provide!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

No branches or pull requests

6 participants