|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Introduction to tf-shell\n", |
| 8 | + "\n", |
| 9 | + "To get started, `pip install tf-shell`. tf-shell has a few modules, the one used\n", |
| 10 | + "in this notebook is `tf_shell`." |
| 11 | + ] |
| 12 | + }, |
| 13 | + { |
| 14 | + "cell_type": "code", |
| 15 | + "execution_count": 1, |
| 16 | + "metadata": {}, |
| 17 | + "outputs": [ |
| 18 | + { |
| 19 | + "name": "stderr", |
| 20 | + "output_type": "stream", |
| 21 | + "text": [ |
| 22 | + "2024-06-10 21:30:04.256734: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.\n", |
| 23 | + "2024-06-10 21:30:04.257664: I external/local_tsl/tsl/cuda/cudart_stub.cc:32] Could not find cuda drivers on your machine, GPU will not be used.\n", |
| 24 | + "2024-06-10 21:30:04.291533: I external/local_tsl/tsl/cuda/cudart_stub.cc:32] Could not find cuda drivers on your machine, GPU will not be used.\n", |
| 25 | + "2024-06-10 21:30:04.428601: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n", |
| 26 | + "To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", |
| 27 | + "2024-06-10 21:30:05.195988: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n" |
| 28 | + ] |
| 29 | + } |
| 30 | + ], |
| 31 | + "source": [ |
| 32 | + "import tf_shell\n", |
| 33 | + "import tensorflow as tf\n", |
| 34 | + "import timeit\n", |
| 35 | + "\n", |
| 36 | + "context = tf_shell.create_context64(\n", |
| 37 | + " log_n=10,\n", |
| 38 | + " main_moduli=[8556589057, 8388812801],\n", |
| 39 | + " plaintext_modulus=40961,\n", |
| 40 | + " scaling_factor=3,\n", |
| 41 | + " mul_depth_supported=3,\n", |
| 42 | + " seed=\"test_seed\",\n", |
| 43 | + ")\n", |
| 44 | + "\n", |
| 45 | + "secret_key = tf_shell.create_key64(context)\n", |
| 46 | + "rotation_key = tf_shell.create_rotation_key64(context, secret_key)\n", |
| 47 | + "\n", |
| 48 | + "a = tf.random.uniform([context.num_slots, 55555], dtype=tf.float32, maxval=10)\n", |
| 49 | + "b = tf.random.uniform([55555, 333], dtype=tf.float32, maxval=10)\n", |
| 50 | + "c = tf.random.uniform([2, context.num_slots], dtype=tf.float32, maxval=10)\n", |
| 51 | + "d = tf.random.uniform([context.num_slots, 4444], dtype=tf.float32, maxval=10)\n", |
| 52 | + "\n", |
| 53 | + "enc_a = tf_shell.to_encrypted(a, secret_key, context)" |
| 54 | + ] |
| 55 | + }, |
| 56 | + { |
| 57 | + "cell_type": "code", |
| 58 | + "execution_count": 2, |
| 59 | + "metadata": {}, |
| 60 | + "outputs": [ |
| 61 | + { |
| 62 | + "name": "stdout", |
| 63 | + "output_type": "stream", |
| 64 | + "text": [ |
| 65 | + "0.4906675929996709\n" |
| 66 | + ] |
| 67 | + } |
| 68 | + ], |
| 69 | + "source": [ |
| 70 | + "def to_pt():\n", |
| 71 | + " return tf_shell.to_shell_plaintext(a, context)\n", |
| 72 | + "\n", |
| 73 | + "time = min(timeit.Timer(to_pt).repeat(repeat=3, number=1))\n", |
| 74 | + "print(time)" |
| 75 | + ] |
| 76 | + }, |
| 77 | + { |
| 78 | + "cell_type": "code", |
| 79 | + "execution_count": 3, |
| 80 | + "metadata": {}, |
| 81 | + "outputs": [ |
| 82 | + { |
| 83 | + "name": "stdout", |
| 84 | + "output_type": "stream", |
| 85 | + "text": [ |
| 86 | + "5.263423050000711\n" |
| 87 | + ] |
| 88 | + } |
| 89 | + ], |
| 90 | + "source": [ |
| 91 | + "def enc():\n", |
| 92 | + " return tf_shell.to_encrypted(d, secret_key, context)\n", |
| 93 | + "\n", |
| 94 | + "time = min(timeit.Timer(enc).repeat(repeat=3, number=1))\n", |
| 95 | + "print(time)" |
| 96 | + ] |
| 97 | + }, |
| 98 | + { |
| 99 | + "cell_type": "code", |
| 100 | + "execution_count": 4, |
| 101 | + "metadata": {}, |
| 102 | + "outputs": [ |
| 103 | + { |
| 104 | + "name": "stdout", |
| 105 | + "output_type": "stream", |
| 106 | + "text": [ |
| 107 | + "0.5277276859997073\n" |
| 108 | + ] |
| 109 | + } |
| 110 | + ], |
| 111 | + "source": [ |
| 112 | + "def dec():\n", |
| 113 | + " return tf_shell.to_tensorflow(enc_a, secret_key)\n", |
| 114 | + "\n", |
| 115 | + "time = min(timeit.Timer(dec).repeat(repeat=3, number=1))\n", |
| 116 | + "print(time)" |
| 117 | + ] |
| 118 | + }, |
| 119 | + { |
| 120 | + "cell_type": "code", |
| 121 | + "execution_count": 5, |
| 122 | + "metadata": {}, |
| 123 | + "outputs": [ |
| 124 | + { |
| 125 | + "name": "stdout", |
| 126 | + "output_type": "stream", |
| 127 | + "text": [ |
| 128 | + "0.4192462440005329\n" |
| 129 | + ] |
| 130 | + } |
| 131 | + ], |
| 132 | + "source": [ |
| 133 | + "def ct_ct_add():\n", |
| 134 | + " return enc_a + enc_a\n", |
| 135 | + "\n", |
| 136 | + "time = min(timeit.Timer(ct_ct_add).repeat(repeat=3, number=1))\n", |
| 137 | + "print(time)" |
| 138 | + ] |
| 139 | + }, |
| 140 | + { |
| 141 | + "cell_type": "code", |
| 142 | + "execution_count": 6, |
| 143 | + "metadata": {}, |
| 144 | + "outputs": [ |
| 145 | + { |
| 146 | + "name": "stdout", |
| 147 | + "output_type": "stream", |
| 148 | + "text": [ |
| 149 | + "0.4219015720009338\n" |
| 150 | + ] |
| 151 | + } |
| 152 | + ], |
| 153 | + "source": [ |
| 154 | + "def ct_ct_sub():\n", |
| 155 | + " return enc_a - enc_a\n", |
| 156 | + "\n", |
| 157 | + "time = min(timeit.Timer(ct_ct_sub).repeat(repeat=3, number=1))\n", |
| 158 | + "print(time)" |
| 159 | + ] |
| 160 | + }, |
| 161 | + { |
| 162 | + "cell_type": "code", |
| 163 | + "execution_count": 7, |
| 164 | + "metadata": {}, |
| 165 | + "outputs": [ |
| 166 | + { |
| 167 | + "name": "stdout", |
| 168 | + "output_type": "stream", |
| 169 | + "text": [ |
| 170 | + "0.8668678089998139\n" |
| 171 | + ] |
| 172 | + } |
| 173 | + ], |
| 174 | + "source": [ |
| 175 | + "def ct_ct_mul():\n", |
| 176 | + " return enc_a * enc_a\n", |
| 177 | + "\n", |
| 178 | + "time = min(timeit.Timer(ct_ct_mul).repeat(repeat=3, number=1))\n", |
| 179 | + "print(time)" |
| 180 | + ] |
| 181 | + }, |
| 182 | + { |
| 183 | + "cell_type": "code", |
| 184 | + "execution_count": 8, |
| 185 | + "metadata": {}, |
| 186 | + "outputs": [ |
| 187 | + { |
| 188 | + "name": "stdout", |
| 189 | + "output_type": "stream", |
| 190 | + "text": [ |
| 191 | + "0.7579904609992809\n" |
| 192 | + ] |
| 193 | + } |
| 194 | + ], |
| 195 | + "source": [ |
| 196 | + "def ct_pt_add():\n", |
| 197 | + " return enc_a + a\n", |
| 198 | + "\n", |
| 199 | + "time = min(timeit.Timer(ct_pt_add).repeat(repeat=3, number=1))\n", |
| 200 | + "print(time)" |
| 201 | + ] |
| 202 | + }, |
| 203 | + { |
| 204 | + "cell_type": "code", |
| 205 | + "execution_count": 9, |
| 206 | + "metadata": {}, |
| 207 | + "outputs": [ |
| 208 | + { |
| 209 | + "name": "stdout", |
| 210 | + "output_type": "stream", |
| 211 | + "text": [ |
| 212 | + "0.6268679120003071\n" |
| 213 | + ] |
| 214 | + } |
| 215 | + ], |
| 216 | + "source": [ |
| 217 | + "def ct_pt_mul():\n", |
| 218 | + " return enc_a * a\n", |
| 219 | + "\n", |
| 220 | + "time = min(timeit.Timer(ct_pt_mul).repeat(repeat=3, number=1))\n", |
| 221 | + "print(time)" |
| 222 | + ] |
| 223 | + }, |
| 224 | + { |
| 225 | + "cell_type": "code", |
| 226 | + "execution_count": 10, |
| 227 | + "metadata": {}, |
| 228 | + "outputs": [ |
| 229 | + { |
| 230 | + "name": "stdout", |
| 231 | + "output_type": "stream", |
| 232 | + "text": [ |
| 233 | + "25.57404864599812\n" |
| 234 | + ] |
| 235 | + } |
| 236 | + ], |
| 237 | + "source": [ |
| 238 | + "def ct_pt_matmul():\n", |
| 239 | + " return tf_shell.matmul(enc_a, b)\n", |
| 240 | + "\n", |
| 241 | + "time = min(timeit.Timer(ct_pt_matmul).repeat(repeat=3, number=1))\n", |
| 242 | + "print(time)" |
| 243 | + ] |
| 244 | + }, |
| 245 | + { |
| 246 | + "cell_type": "code", |
| 247 | + "execution_count": 11, |
| 248 | + "metadata": {}, |
| 249 | + "outputs": [ |
| 250 | + { |
| 251 | + "name": "stdout", |
| 252 | + "output_type": "stream", |
| 253 | + "text": [ |
| 254 | + "361.1888753159983\n" |
| 255 | + ] |
| 256 | + } |
| 257 | + ], |
| 258 | + "source": [ |
| 259 | + "def pt_ct_matmul():\n", |
| 260 | + " return tf_shell.matmul(c, enc_a, rotation_key)\n", |
| 261 | + "\n", |
| 262 | + "time = min(timeit.Timer(pt_ct_matmul).repeat(repeat=3, number=1))\n", |
| 263 | + "print(time)" |
| 264 | + ] |
| 265 | + }, |
| 266 | + { |
| 267 | + "cell_type": "code", |
| 268 | + "execution_count": 12, |
| 269 | + "metadata": {}, |
| 270 | + "outputs": [ |
| 271 | + { |
| 272 | + "name": "stdout", |
| 273 | + "output_type": "stream", |
| 274 | + "text": [ |
| 275 | + "4.650902364999638\n" |
| 276 | + ] |
| 277 | + } |
| 278 | + ], |
| 279 | + "source": [ |
| 280 | + "def ct_roll():\n", |
| 281 | + " return tf_shell.roll(enc_a, 2, rotation_key)\n", |
| 282 | + "\n", |
| 283 | + "time = min(timeit.Timer(ct_roll).repeat(repeat=3, number=1))\n", |
| 284 | + "print(time)" |
| 285 | + ] |
| 286 | + } |
| 287 | + ], |
| 288 | + "metadata": { |
| 289 | + "kernelspec": { |
| 290 | + "display_name": ".venv", |
| 291 | + "language": "python", |
| 292 | + "name": "python3" |
| 293 | + }, |
| 294 | + "language_info": { |
| 295 | + "codemirror_mode": { |
| 296 | + "name": "ipython", |
| 297 | + "version": 3 |
| 298 | + }, |
| 299 | + "file_extension": ".py", |
| 300 | + "mimetype": "text/x-python", |
| 301 | + "name": "python", |
| 302 | + "nbconvert_exporter": "python", |
| 303 | + "pygments_lexer": "ipython3", |
| 304 | + "version": "3.10.12" |
| 305 | + } |
| 306 | + }, |
| 307 | + "nbformat": 4, |
| 308 | + "nbformat_minor": 2 |
| 309 | +} |
0 commit comments