Skip to content

How are LTV distributions calculated? #3

Open
@JohanWork

Description

@JohanWork

Thank you for making the code for the loss function, metrics and example notebooks open source.

From the last paragraph in section 3:

Another key advantage of the ZILN loss is that it provides a full prediction distribution. We obtain not only the probability of returning but also the value distribution of LTV for returning customers. In addition to mean LTV prediction, the uncertainty of LTV predictions can be assessed using quantiles of a lognormal distribution as in general quantile regression.

To me it is unclear both from checking the code examples and the paper, how the LTV prediction distributions are calculated, can you get them both for a singel predictions and a group of prediction for example?

Thank you!

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions