This repository has been archived by the owner on Dec 12, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathutils.py
executable file
·170 lines (134 loc) · 4.09 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
"""Utility functions."""
import cv2
import matplotlib as mpl
from matplotlib import cm
from matplotlib.backends.backend_agg import FigureCanvasAgg
from matplotlib.figure import Figure
import numpy as np
import torch
HUGE_NUMBER = 1e10
TINY_NUMBER = 1e-6 # float32 only has 7 decimal digits precision
img_HWC2CHW = lambda x: x.permute(2, 0, 1)
gray2rgb = lambda x: x.unsqueeze(2).repeat(1, 1, 3)
to8b = lambda x: (255 * np.clip(x, 0, 1)).astype(np.uint8)
mse2psnr = lambda x: -10.0 * np.log(x + TINY_NUMBER) / np.log(10.0)
def img2mse(x, y, mask=None):
"""MSE between two images."""
if mask is None:
return torch.mean((x - y) * (x - y))
else:
return torch.sum((x - y) * (x - y) * mask.unsqueeze(-1)) / (
torch.sum(mask) * x.shape[-1] + TINY_NUMBER
)
def img2charbonier(x, y, mask=None, eps=0.001):
"""Charbonier loss between two images."""
if mask is None:
return torch.mean(torch.sqrt((x - y) ** 2 + eps**2))
else:
return torch.sum(
torch.sqrt((x - y) ** 2 + eps**2) * mask.unsqueeze(-1)
) / (torch.sum(mask) * x.shape[-1] + TINY_NUMBER)
def img2psnr(x, y, mask=None):
return mse2psnr(img2mse(x, y, mask).item())
def cycle(iterable):
while True:
for x in iterable:
yield x
def get_vertical_colorbar(
h, vmin, vmax, cmap_name='jet', label=None, cbar_precision=2
):
"""Get colorbar."""
fig = Figure(figsize=(2, 8), dpi=100)
fig.subplots_adjust(right=1.5)
canvas = FigureCanvasAgg(fig)
# Do some plotting.
ax = fig.add_subplot(111)
cmap = cm.get_cmap(cmap_name)
norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)
tick_cnt = 6
tick_loc = np.linspace(vmin, vmax, tick_cnt)
cb1 = mpl.colorbar.ColorbarBase(
ax, cmap=cmap, norm=norm, ticks=tick_loc, orientation='vertical'
)
tick_label = [str(np.round(x, cbar_precision)) for x in tick_loc]
if cbar_precision == 0:
tick_label = [x[:-2] for x in tick_label]
cb1.set_ticklabels(tick_label)
cb1.ax.tick_params(labelsize=18, rotation=0)
if label is not None:
cb1.set_label(label)
fig.tight_layout()
canvas.draw()
s, (width, height) = canvas.print_to_buffer()
im = np.frombuffer(s, np.uint8).reshape((height, width, 4))
im = im[:, :, :3].astype(np.float32) / 255.0
if h != im.shape[0]:
w = int(im.shape[1] / im.shape[0] * h)
im = cv2.resize(im, (w, h), interpolation=cv2.INTER_AREA)
return im
def colorize_np(
x,
cmap_name='jet',
mask=None,
range=None,
append_cbar=False,
cbar_in_image=False,
cbar_precision=2,
):
"""turn a grayscale image into a color image."""
if range is not None:
vmin, vmax = range
elif mask is not None:
# vmin, vmax = np.percentile(x[mask], (2, 100))
vmin = np.min(x[mask][np.nonzero(x[mask])])
vmax = np.max(x[mask])
# vmin = vmin - np.abs(vmin) * 0.01
x[np.logical_not(mask)] = vmin
# print(vmin, vmax)
else:
vmin, vmax = np.percentile(x, (1, 99))
vmax += TINY_NUMBER
x = np.clip(x, vmin, vmax)
x = (x - vmin) / (vmax - vmin)
x = np.clip(x, 0.0, 1.0)
cmap = cm.get_cmap(cmap_name)
x_new = cmap(x)[:, :, :3]
if mask is not None:
mask = np.float32(mask[:, :, np.newaxis])
x_new = x_new * mask + np.ones_like(x_new) * (1.0 - mask)
cbar = get_vertical_colorbar(
h=x.shape[0],
vmin=vmin,
vmax=vmax,
cmap_name=cmap_name,
cbar_precision=cbar_precision,
)
if append_cbar:
if cbar_in_image:
x_new[:, -cbar.shape[1] :, :] = cbar
else:
x_new = np.concatenate(
(x_new, np.zeros_like(x_new[:, :5, :]), cbar), axis=1
)
return x_new
else:
return x_new
# tensor
def colorize(
x,
cmap_name='jet',
mask=None,
range=None,
append_cbar=False,
cbar_in_image=False,
):
"""Convert gray scale image such as depth to RGB image."""
device = x.device
x = x.cpu().numpy()
if mask is not None:
mask = mask.cpu().numpy() > 0.99
kernel = np.ones((3, 3), np.uint8)
mask = cv2.erode(mask.astype(np.uint8), kernel, iterations=1).astype(bool)
x = colorize_np(x, cmap_name, mask, range, append_cbar, cbar_in_image)
x = torch.from_numpy(x).to(device)
return x