-
Notifications
You must be signed in to change notification settings - Fork 2.6k
/
predicate_task.py
441 lines (376 loc) · 17 KB
/
predicate_task.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
# Copyright 2018 Deepmind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A task where different `Predicate`s need to be solved.
In each episode a spiking reward is given for each `Predicate` solved with an
extra reward bonus added when all of the predicates are solved. On each episode
the number of predicates are sampled randomly. This provides a common interface
to specify distributions over tasks ranging in difficulty levels but with common
components. Each `Predicate` involves some manipulation of the walker, props and
targets which thus allows for rich configurations of tasks to be defined.
"""
import colorsys
import functools
from dm_control import composer
from dm_control.composer.observation import observable
from dm_env import specs
import numpy as np
_FLOOR_GAP_CHAR = '#'
_AMBIENT_HEADLIGHT = 0.8
_HSV_SATURATION = 0.5
_HSV_ACTIVATED_SATURATION = 0.75
_HSV_VALUE = 1.0
_PROP_SIZE = 0.5
_MAX_ITERATIONS = 1000
def _generate_target_permutation(num_targets, random_state):
targets = list(range(num_targets))
random_state.shuffle(targets)
return targets
class PredicateTask(composer.Task):
"""Requires objects to be moved onto targets."""
def __init__(self,
walker,
maze_arena,
predicates,
props=None,
targets=None,
max_num_predicates=1,
randomize_num_predicates=False,
predicate_prob=None,
reward_scale=1.0,
terminating_reward_bonus=5.0,
regenerate_predicates=False,
physics_timestep=0.001,
control_timestep=0.025,
alive_threshold=-0.5):
"""Initializes a task with multiple sub-components(predicates) to be solved.
This task essentially contains different flavors of go to target. The
task contains a walker, props and target positions. To solve the entire
task, the walker would need to solve a certain number of 'predicates' or
sub-tasks. For instance, the task could contain 2 predicates for the
walker going to a target position and the walker moving a box to a target
position. In such a case, there is an implicit ordering of the way the
walker needs to solve things to achieve the net task.
Args:
walker: A `Walker` instance.
maze_arena: An `Entity` that defines a maze-like arena.
predicates: A list of `Predicate` instances for ths task.
props: An optional list of `manipulation.prop` instances for the task.
These are used to generate observables for the task.
targets: An optional list of `locomotion.prop` instances for the task.
These are used to generate observables for the task.
max_num_predicates: The maximum number of predicates to use in each
episode of the task.
randomize_num_predicates: A `bool` flag indicating whether the number of
`valid` predicates should be randomized for each task. If set to `True`,
then on each episode, between 1 and `num_predicates` are chosen as valid
predicates and `predicate.invalid_observation_value` is output for the
remaining slots in the observation.
predicate_prob: An optional `list` containing the probabilities for each
of the `predicates`. If not `None`, must have the same length as
`predicates.
reward_scale: `float` to scale the reward.
terminating_reward_bonus: A bonus added to the reward when all predicates
have been solved.
regenerate_predicates: A `bool` flag indicating which when set, spawns a
new set of predicates when the previous set is successful instead of
terminating.
physics_timestep: The time step of the physics simulation.
control_timestep: Should be an integer multiple of the physics time step.
alive_threshold: Aliveness in [-1., 0.].
Raises:
ValueError: If `num_props` is greater than `num_targets` or if
`num_predicates` is greater than `num_targets`.
"""
if max_num_predicates > len(predicates):
raise ValueError('Not enough predicates for task. The maximum number of '
'predicates can be '
'{} but only {} predicates provided.'.format(
max_num_predicates, len(predicates)))
self._arena = maze_arena
self._walker = walker
self._reward_scale = reward_scale
self._alive_threshold = alive_threshold
self._terminating_reward_bonus = terminating_reward_bonus
self._arena.mjcf_model.visual.headlight.ambient = [_AMBIENT_HEADLIGHT] * 3
maze_arena.text_maze_regenerated_hook = self._regenerate_positions
self._max_num_predicates = max_num_predicates
self._predicates = predicates
self._predicate_prob = predicate_prob
self._randomize_num_predicates = randomize_num_predicates
self._active_predicates = []
self._regen_predicates = regenerate_predicates
self._reward = 0
# Targets.
self._targets = targets
for target in targets:
self._arena.attach(target)
if props is None:
props = []
# Props.
self._props = props
# M Props + 1 Walker and we choose 'N' predicates as the task.
for prop in props:
prop.geom.rgba = [0, 0, 0, 1] # Will be randomized for each episode.
self._arena.add_free_entity(prop)
# Create walkers and corresponding observables.
walker.create_root_joints(self._arena.attach(walker))
self._create_per_walker_observables(walker)
self._generate_target_permutation = None
maze_arena.text_maze_regenerated_hook = self._regenerate_positions
# Set time steps.
self.set_timesteps(
physics_timestep=physics_timestep, control_timestep=control_timestep)
def _create_per_walker_observables(self, walker):
# Enable proprioceptive observables.
for obs in (walker.observables.proprioception +
walker.observables.kinematic_sensors +
[walker.observables.position, walker.observables.orientation]):
obs.enabled = True
xpos_origin_callable = lambda phys: phys.bind(walker.root_body).xpos
# Egocentric prop positions.
# For each prop, we add the positions for the 8 corners using the sites.
for prop_id, prop in enumerate(self._props):
def _prop_callable(physics, prop=prop):
return [physics.bind(s).xpos for s in prop.corner_sites]
if len(self._props) > 1:
observable_name = 'prop_{}_position'.format(prop_id)
else:
observable_name = 'prop_position'
walker.observables.add_egocentric_vector(
observable_name,
observable.Generic(_prop_callable),
origin_callable=xpos_origin_callable)
# Egocentric target positions.
def _target_callable(physics):
target_list = []
for target in self._targets:
target_list.append(target.site_pos(physics))
return np.array(target_list)
walker.observables.add_egocentric_vector(
'target_positions',
observable.Generic(_target_callable),
origin_callable=xpos_origin_callable)
# Whether targets are activated.
def _predicate_activated_callable(physics):
predicate_activated_list = np.full(self._max_num_predicates, True)
for i, predicate in enumerate(self._active_predicates):
predicate_activated_list[i] = predicate.is_active(physics)
return predicate_activated_list
walker.observables.add_observable(
'predicates_activated',
observable.Generic(_predicate_activated_callable))
self._observables = self._walker.observables.as_dict()
# Predicate observables.
for pred_idx in range(self._max_num_predicates):
def _predicate_callable(_, pred_idx=pred_idx):
"""Callable for the predicate observation."""
if pred_idx in range(len(self._active_predicates)):
predicate = self._active_predicates[pred_idx]
return predicate.observation_value
else:
# Use any predicates inactive observation to fill the rest.
predicate = self._predicates[0]
return predicate.inactive_observation_value
predicate_name = 'predicate_{}'.format(pred_idx)
self._observables[predicate_name] = observable.Generic(
_predicate_callable)
self._observables[predicate_name].enabled = True
@property
def observables(self):
return self._observables
@property
def name(self):
return 'predicate_task'
@property
def root_entity(self):
return self._arena
def _regenerate_positions(self):
target_permutation = self._generate_target_permutation(
len(self._arena.target_positions))
num_permutations = len(self._props) + len(self._targets)
target_permutation = target_permutation[:num_permutations]
if len(self._props) + len(self._targets) > len(
self._arena.target_positions):
raise RuntimeError(
'The generated maze does not contain enough target positions '
'for the requested number of props ({}) and targets ({}): got {}.'
.format(
len(self._props), len(self._targets),
len(self._arena.target_positions)))
self._prop_positions = []
for i in range(len(self._props)):
self._prop_positions.append(
self._arena.target_positions[target_permutation[i]])
self._target_positions = []
for i in range(len(self._targets)):
idx = i + len(self._props)
self._target_positions.append(
self._arena.target_positions[target_permutation[idx]])
def initialize_episode_mjcf(self, random_state):
self._generate_target_permutation = functools.partial(
_generate_target_permutation, random_state=random_state)
self._arena.regenerate()
# Set random colors for the props and targets.
self._set_random_colors(random_state)
self._set_active_predicates(random_state)
def _set_active_predicates(self, random_state):
# Reinitialize predicates to set any properties they want.
iteration = 0
valid_set_found = False
while not valid_set_found and iteration < _MAX_ITERATIONS:
for predicate in self._predicates:
predicate.reinitialize(random_state)
if self._randomize_num_predicates and self._max_num_predicates > 1:
num_predicates = random_state.choice(
list(range(1, self._max_num_predicates + 1)), size=1)[0]
else:
num_predicates = self._max_num_predicates
valid_set_found = self._choose_random_predicates(random_state,
num_predicates)
iteration += 1
if not valid_set_found:
raise ValueError(
'Could not find set of active predicates with '
'unique objects are after {} iterations.'.format(_MAX_ITERATIONS))
for predicate in self._active_predicates:
predicate.activate_predicate()
def _choose_random_predicates(self, random_state, num_predicates):
self._active_predicates = random_state.choice(
self._predicates,
replace=False,
size=num_predicates,
p=self._predicate_prob)
objects_in_common = self._active_predicates[0].objects_in_use
for predicate in self._active_predicates[1:]:
new_objects = predicate.objects_in_use
if objects_in_common.intersection(new_objects):
return False
objects_in_common.union(new_objects)
return True
def _set_random_colors(self, random_state):
hue0 = random_state.uniform()
hues = [(hue0 + i / len(self._targets)) % 1.0
for i in range(len(self._targets))]
rgbs = [
colorsys.hsv_to_rgb(hue, _HSV_SATURATION, _HSV_VALUE) for hue in hues
]
activated_rgbs = [
colorsys.hsv_to_rgb(hue, _HSV_ACTIVATED_SATURATION, _HSV_VALUE)
for hue in hues
]
# There are fewer props than targets.
# Pick as far apart colors for each prop as possible.
if self._props:
targets_per_prop = len(self._targets) // len(self._props)
else:
targets_per_prop = len(self._targets)
for prop_id in range(len(self._props)):
# The first few targets have to match the props' color.
rgb_id = prop_id * targets_per_prop
self._props[prop_id].geom.rgba[:3] = rgbs[rgb_id]
self._targets[prop_id].set_colors(rgbs[rgb_id], activated_rgbs[rgb_id])
# Assign colors not used by any prop to decoy targets.
for decoy_target_offset in range(targets_per_prop - 1):
target_id = len(
self._props) + prop_id * targets_per_prop + decoy_target_offset
rgb_id = prop_id * targets_per_prop + decoy_target_offset
self._targets[target_id].set_colors(rgbs[rgb_id], rgbs[rgb_id])
# Remainder loop for targets.
for target_id in range(targets_per_prop * len(self._props),
len(self._targets)):
self._targets[target_id].set_colors(rgbs[target_id], rgbs[target_id])
def initialize_episode(self, physics, random_state):
self._first_step = True
self._was_active = [False] * len(self._active_predicates)
walker = self._walker
spawn_indices = random_state.permutation(len(self._arena.spawn_positions))
spawn_index = spawn_indices[0]
walker.reinitialize_pose(physics, random_state)
spawn_position = self._arena.spawn_positions[spawn_index]
spawn_rotation = random_state.uniform(-np.pi, np.pi)
spawn_quat = np.array(
[np.cos(spawn_rotation / 2), 0, 0,
np.sin(spawn_rotation / 2)])
walker.shift_pose(
physics, [spawn_position[0], spawn_position[1], 0.0],
spawn_quat,
rotate_velocity=True)
for prop, prop_xy_position in zip(self._props, self._prop_positions):
# Position at the middle of a maze cell.
prop_position = np.array(
[prop_xy_position[0], prop_xy_position[1], prop.geom.size[2]])
# Randomly rotate the prop around the z-axis.
prop_rotation = random_state.uniform(-np.pi, np.pi)
prop_quat = np.array(
[np.cos(prop_rotation / 2), 0, 0,
np.sin(prop_rotation / 2)])
# Taking into account the prop's orientation, first calculate how much we
# can displace the prop from the center of a maze cell without any part of
# it sticking out of the cell.
x, y, _ = prop.geom.size
cos = np.cos(prop_rotation)
sin = np.sin(prop_rotation)
x_max = max([np.abs(x * cos - y * sin), np.abs(x * cos + y * sin)])
y_max = max([np.abs(y * cos + x * sin), np.abs(y * cos - x * sin)])
prop_max_displacement = self._arena.xy_scale / 2 - np.array(
[x_max, y_max])
assert np.all(prop_max_displacement >= 0)
prop_max_displacement *= 0.99 # Safety factor.
# Then randomly displace the prop from the center of the maze cell.
prop_position[:2] += prop_max_displacement * random_state.uniform(
-1, 1, 2)
# Commit the prop's final pose.
prop.set_pose(physics, position=prop_position, quaternion=prop_quat)
for target, target_position in zip(self._targets, self._target_positions):
target_position[2] = _PROP_SIZE
target.set_position(physics, target_position)
def before_step(self, physics, actions, random_state):
if isinstance(actions, list):
actions = np.concatenate(actions)
super(PredicateTask, self).before_step(physics, actions, random_state)
if self._first_step:
self._first_step = False
else:
self._was_active = [
predicate.is_active(physics) for predicate in self._active_predicates
]
def after_step(self, physics, random_state):
if self._all_predicates_satisfied() and self._regen_predicates:
self._set_random_colors(random_state)
self._set_active_predicates(random_state)
super(PredicateTask, self).after_step(physics, random_state)
def get_reward(self, physics):
reward = 0.0
for predicate, was_active in zip(self._active_predicates, self._was_active):
if predicate.is_active(physics) and not was_active:
reward += 1.0
elif was_active and not predicate.is_active(physics):
reward -= 1.0
if self._all_predicates_satisfied():
reward += self._terminating_reward_bonus
self._reward = reward
return reward * self._reward_scale
def _all_predicates_satisfied(self):
return sum(self._was_active) == len(self._active_predicates)
def should_terminate_episode(self, physics):
return ((self._all_predicates_satisfied() and not self._regen_predicates) or
self._walker.aliveness(physics) < self._alive_threshold)
def get_discount(self, physics):
if self.should_terminate_episode(physics):
return 0.0
return 1.0
def get_reward_spec(self):
return specs.Array(shape=[], dtype=np.float32)
def get_discount_spec(self):
return specs.Array(shape=[], dtype=np.float32)