-
Notifications
You must be signed in to change notification settings - Fork 2.6k
/
contacts_experiment.py
232 lines (205 loc) · 10.2 KB
/
contacts_experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# Copyright 2019 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contact prediction convnet experiment example."""
from absl import logging
import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import
from alphafold_casp13 import contacts_dataset
from alphafold_casp13 import contacts_network
def _int_ph(shape, name):
return tf.placeholder(
dtype=tf.int32, shape=shape, name=('%s_placeholder' % name))
def _float_ph(shape, name):
return tf.placeholder(
dtype=tf.float32, shape=shape, name=('%s_placeholder' % name))
class Contacts(object):
"""Contact prediction experiment."""
def __init__(
self, tfrecord, stats_file, network_config, crop_size_x, crop_size_y,
feature_normalization, normalization_exclusion):
"""Builds the TensorFlow graph."""
self.network_config = network_config
self.crop_size_x = crop_size_x
self.crop_size_y = crop_size_y
self._feature_normalization = feature_normalization
self._normalization_exclusion = normalization_exclusion
self._model = contacts_network.ContactsNet(**network_config)
self._features = network_config.features
self._scalars = network_config.scalars
self._targets = network_config.targets
# Add extra targets we need.
required_targets = ['domain_name', 'resolution', 'chain_name']
if self.model.torsion_multiplier > 0:
required_targets.extend([
'phi_angles', 'phi_mask', 'psi_angles', 'psi_mask'])
if self.model.secstruct_multiplier > 0:
required_targets.extend(['sec_structure', 'sec_structure_mask'])
if self.model.asa_multiplier > 0:
required_targets.extend(['solv_surf', 'solv_surf_mask'])
extra_targets = [t for t in required_targets if t not in self._targets]
if extra_targets:
targets = list(self._targets)
targets.extend(extra_targets)
self._targets = tuple(targets)
logging.info('Targets %s %s extra %s',
type(self._targets), self._targets, extra_targets)
logging.info('Evaluating on %s, stats: %s', tfrecord, stats_file)
self._build_evaluation_graph(tfrecord=tfrecord, stats_file=stats_file)
@property
def model(self):
return self._model
def _get_feature_normalization(self, features):
return {key: self._feature_normalization
for key in features
if key not in list(self._normalization_exclusion)}
def _build_evaluation_graph(self, tfrecord, stats_file):
"""Constructs the graph in pieces so it can be fed."""
with tf.name_scope('competitionsep'):
# Construct the dataset and mapping ops.
dataset = contacts_dataset.create_tf_dataset(
tf_record_filename=tfrecord,
features=tuple(self._features) + tuple(
self._scalars) + tuple(self._targets))
def normalize(data):
return contacts_dataset.normalize_from_stats_file(
features=data,
stats_file_path=stats_file,
feature_normalization=self._get_feature_normalization(
self._features),
copy_unnormalized=list(set(self._features) & set(self._targets)))
def convert_to_legacy(features):
return contacts_dataset.convert_to_legacy_proteins_dataset_format(
features, self._features, self._scalars, self._targets)
dataset = dataset.map(normalize)
dataset = dataset.map(convert_to_legacy)
dataset = dataset.batch(1)
# Get a batch of tensors in the legacy ProteinsDataset format.
iterator = tf.data.make_one_shot_iterator(dataset)
self._input_batch = iterator.get_next()
self.num_eval_examples = sum(
1 for _ in tf.python_io.tf_record_iterator(tfrecord))
logging.info('Eval batch:\n%s', self._input_batch)
feature_dim_1d = self._input_batch.inputs_1d.shape.as_list()[-1]
feature_dim_2d = self._input_batch.inputs_2d.shape.as_list()[-1]
feature_dim_2d *= 3 # The diagonals will be stacked before feeding.
# Now placeholders for the graph to compute the outputs for one crop.
self.inputs_1d_placeholder = _float_ph(
shape=[None, None, feature_dim_1d], name='inputs_1d')
self.residue_index_placeholder = _int_ph(
shape=[None, None], name='residue_index')
self.inputs_2d_placeholder = _float_ph(
shape=[None, None, None, feature_dim_2d], name='inputs_2d')
# 4 ints: x_start, x_end, y_start, y_end.
self.crop_placeholder = _int_ph(shape=[None, 4], name='crop')
# Finally placeholders for the graph to score the complete contact map.
self.probs_placeholder = _float_ph(shape=[None, None, None], name='probs')
self.softmax_probs_placeholder = _float_ph(
shape=[None, None, None, self.network_config.num_bins],
name='softmax_probs')
self.cb_placeholder = _float_ph(shape=[None, None, 3], name='cb')
self.cb_mask_placeholder = _float_ph(shape=[None, None], name='cb_mask')
self.lengths_placeholder = _int_ph(shape=[None], name='lengths')
if self.model.secstruct_multiplier > 0:
self.sec_structure_placeholder = _float_ph(
shape=[None, None, 8], name='sec_structure')
self.sec_structure_logits_placeholder = _float_ph(
shape=[None, None, 8], name='sec_structure_logits')
self.sec_structure_mask_placeholder = _float_ph(
shape=[None, None, 1], name='sec_structure_mask')
if self.model.asa_multiplier > 0:
self.solv_surf_placeholder = _float_ph(
shape=[None, None, 1], name='solv_surf')
self.solv_surf_logits_placeholder = _float_ph(
shape=[None, None, 1], name='solv_surf_logits')
self.solv_surf_mask_placeholder = _float_ph(
shape=[None, None, 1], name='solv_surf_mask')
if self.model.torsion_multiplier > 0:
self.torsions_truth_placeholder = _float_ph(
shape=[None, None, 2], name='torsions_truth')
self.torsions_mask_placeholder = _float_ph(
shape=[None, None, 1], name='torsions_mask')
self.torsion_logits_placeholder = _float_ph(
shape=[None, None, self.network_config.torsion_bins ** 2],
name='torsion_logits')
# Build a dict to pass all the placeholders into build.
placeholders = {
'inputs_1d_placeholder': self.inputs_1d_placeholder,
'residue_index_placeholder': self.residue_index_placeholder,
'inputs_2d_placeholder': self.inputs_2d_placeholder,
'crop_placeholder': self.crop_placeholder,
'probs_placeholder': self.probs_placeholder,
'softmax_probs_placeholder': self.softmax_probs_placeholder,
'cb_placeholder': self.cb_placeholder,
'cb_mask_placeholder': self.cb_mask_placeholder,
'lengths_placeholder': self.lengths_placeholder,
}
if self.model.secstruct_multiplier > 0:
placeholders.update({
'sec_structure': self.sec_structure_placeholder,
'sec_structure_logits_placeholder':
self.sec_structure_logits_placeholder,
'sec_structure_mask': self.sec_structure_mask_placeholder,})
if self.model.asa_multiplier > 0:
placeholders.update({
'solv_surf': self.solv_surf_placeholder,
'solv_surf_logits_placeholder': self.solv_surf_logits_placeholder,
'solv_surf_mask': self.solv_surf_mask_placeholder,})
if self.model.torsion_multiplier > 0:
placeholders.update({
'torsions_truth': self.torsions_truth_placeholder,
'torsion_logits_placeholder': self.torsion_logits_placeholder,
'torsions_truth_mask': self.torsions_mask_placeholder,})
activations = self._model(
crop_size_x=self.crop_size_x,
crop_size_y=self.crop_size_y,
placeholders=placeholders)
self.eval_probs_softmax = tf.nn.softmax(
activations[:, :, :, :self.network_config.num_bins])
self.eval_probs = tf.reduce_sum(
self.eval_probs_softmax[:, :, :, :self._model.quant_threshold()],
axis=3)
def get_one_example(self, sess):
"""Pull one example off the queue so we can feed it for evaluation."""
request_dict = {
'inputs_1d': self._input_batch.inputs_1d,
'inputs_2d': self._input_batch.inputs_2d,
'sequence_lengths': self._input_batch.sequence_lengths,
'beta_positions': self._input_batch.targets.beta_positions,
'beta_mask': self._input_batch.targets.beta_mask,
'domain_name': self._input_batch.targets.domain_name,
'chain_name': self._input_batch.targets.chain_name,
'sequences': self._input_batch.sequences,
}
if hasattr(self._input_batch.targets, 'residue_index'):
request_dict.update(
{'residue_index': self._input_batch.targets.residue_index})
if hasattr(self._input_batch.targets, 'phi_angles'):
request_dict.update(
{'phi_angles': self._input_batch.targets.phi_angles,
'psi_angles': self._input_batch.targets.psi_angles,
'phi_mask': self._input_batch.targets.phi_mask,
'psi_mask': self._input_batch.targets.psi_mask})
if hasattr(self._input_batch.targets, 'sec_structure'):
request_dict.update(
{'sec_structure': self._input_batch.targets.sec_structure,
'sec_structure_mask': self._input_batch.targets.sec_structure_mask,})
if hasattr(self._input_batch.targets, 'solv_surf'):
request_dict.update(
{'solv_surf': self._input_batch.targets.solv_surf,
'solv_surf_mask': self._input_batch.targets.solv_surf_mask,})
if hasattr(self._input_batch.targets, 'alpha_positions'):
request_dict.update(
{'alpha_positions': self._input_batch.targets.alpha_positions,
'alpha_mask': self._input_batch.targets.alpha_mask,})
batch = sess.run(request_dict)
return batch