-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLDR.py
73 lines (55 loc) · 1.86 KB
/
LDR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import cv2
import numpy as np
from matplotlib import pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
from simulate import *
from drawpatch import *
def LDR(img, n):
Interval = 255.0/n
img = np.float32(img)
img = np.uint8(img/Interval)
img = np.clip(img,0,n-1)
img = np.uint8((img+0.5)*Interval)
return img
def HistogramEqualization(img,clipLimit=2, tileGridSize=(10,10)):
# create a CLAHE object (Arguments are optional).
clahe = cv2.createCLAHE(clipLimit=clipLimit, tileGridSize=tileGridSize)
img = clahe.apply(img)
return img
if __name__ == '__main__':
img_path = './input/jiangwen/010s.jpg'
img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)
img = HistogramEqualization(img)
# img = LDR(img)
# LDR_single(img, 8)
# # 核的大小和形状
# kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2, 2))
# # 开操作
# img = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel, iterations=3)
# cv2.imshow('MORPH_OPEN', img)
# cv2.waitKey(0)
# LDR_single_add(img, 8)
s = SideWindowFilter(radius=1, iteration=1)
img = torch.tensor(img, dtype=torch.float32)
if len(img.size()) == 2:
h, w = img.size()
img = img.view(-1, 1, h, w)
else:
c, h, w = img.size()
img = img.view(-1, c, h, w)
print('img size ', img.shape)
res = s.forward(img)
print('res = ', res.shape)
if res.size(1) == 2:
res = np.transpose(np.squeeze(res.data.numpy()), (1, 2, 0))
else:
res = np.squeeze(res.data.numpy())
for n in range(8,11):
img = LDR(res, n)
# cv2.imshow("LDR",img)
# cv2.waitKey(0)
cv2.imwrite("D:/ECCV2020/input/jiangwen/LDR{}.jpg".format(n),img)
print("done")