-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathcos_reconsE_lnce.yaml
42 lines (39 loc) · 1.88 KB
/
cos_reconsE_lnce.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#Was in the course of translating this to use SGD instead of DefaultTrainingAlgorithm. Realized it'll be kind of complicated
#to restore since local_noise_ebm was accidentally deleted when I removed it from the public repo (I moved it into galatea,
#deleted the old class repo, then accidentally overwrote the copy in
#galatea with a git command that didn't do what I expected it to (fuck you, git), which at that time was the only copy)
#
# Also, it looks like this might not be the best script to convert, since it says "different_examples" : 1.
#
!obj:pylearn2.scripts.train.Train {
"dataset": !obj:pylearn2.datasets.cos_dataset.CosDataset {},
"model": !obj:galatea.models.febm.FEBM {
"energy_function": !obj:galatea.energy_functions.scratch.recons_model_1 {
"nvis" : 2,
"nhid" : 400,
"init_bias_hid" : 0.0,
"irange" : 2.5
}
"init_noise_var" : 2.0,
"min_misclass" : .05,
"max_misclass" : .5,
"noise_var_scale_up" : 1.001,
"noise_var_scale_down" : .999,
"max_noise_var" : 2.,
"time_constant" : .1,
"learning_rate" : .0002,
"different_examples" : 1.,
"init_vis_prec" : 1.,
"learn_vis_prec" : 1.,
"vis_prec_lr_scale" : .001,
"init_delta" : -0.5
},
"algorithm": !obj:pylearn2.training_algorithms.default.DefaultTrainingAlgorithm {
"learning_rate" : .0002,
"batch_size" : 5,
"batches_per_iter" : 1000,
"monitoring_batches" : 10,
"monitoring_dataset" : !obj:pylearn2.datasets.cos_dataset.CosDataset {},
},
"save_path": "autoencoder_cos.pkl"
}