-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathresearch.html
247 lines (238 loc) · 28.5 KB
/
research.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
<!DOCTYPE html>
<html lang="en">
<head>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-135435972-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-135435972-1');
</script>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Goodarzi Lab @ UCSF</title>
<meta name="description" content="Goodarzi Lab @ UCSF">
<!-- core CSS -->
<link href="css/bootstrap.min.css" rel="stylesheet">
<link href="css/bootstrap-social.css" rel="stylesheet">
<link rel="stylesheet" href="css/academicons.min.css"/>
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/font-awesome/4.4.0/css/font-awesome.min.css">
<link href="css/prettyPhoto.css" rel="stylesheet">
<link href="css/main.css" rel="stylesheet">
<link href="css/responsive.css" rel="stylesheet">
<link rel="shortcut icon" type="image/x-icon" href="favicon-flask.ico" />
<!--[if lt IE 9]>
<script src="js/html5shiv.js"></script>
<script src="js/respond.min.js"></script>
<![endif]-->
</head>
<!--/head-->
<body>
<header id="header">
<nav class="navbar navbar-inverse" role="banner">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-collapse"> <span class="sr-only">Toggle navigation</span> <span class="icon-bar"></span> <span class="icon-bar"></span> <span class="icon-bar"></span> </button>
<a class="navbar-brand" href="index.html"><i class="fa fa-flask"></i> Goodarzi Lab</a>
</div>
<div class="collapse navbar-collapse navbar-right">
<ul class="nav navbar-nav">
<li><a href="index.html">Home</a></li>
<li class="active"><a href="research.html">Research</a></li>
<li><a href="publications.html">Publications</a></li>
<li><a href="people.html">People</a></li>
<li><a href="software.html">Software</a></li>
<li><a href="donate.html">Donate</a></li>
<li><a href="positions.html">Positions</a></li>
<li><a href="contact-us.html">Contact</a></li>
</ul>
</div>
</div>
<!--/.container-->
</nav>
<!--/nav-->
</header>
<!--/header-->
<div class="color-border"> </div>
<section>
<div class="container">
<div class="center">
<h2>Research</h2>
<p class="lead">We combine modern experimental and computational technologies to understand complex human diseases at a molecular level.<br />
We are predominantly focused on metastatic progression in multiple cancers and neurodegenerative diseases as the biggest challenges to human health in the 21st century.</p>
</div>
<!--/.center-->
<div class="row box-shadow">
<div class="col-xs-12 col-sm-12 col-md-12">
<div class="row thumbnail row-sm-flex-center">
<div class="col-xs-4 col-sm-4 col-md-3">
<img class="img-responsive" src="images/img/transformer.jpg">
</div>
<div class="col-xs-8 col-sm-8 col-md-9">
<h2>Developing specialized AI/ML models to enable in silico functional genomics</h2>
<p>Advances artificial intelligence (AI) and deep learning has fundamentally revolutionized many aspects of our lives, and research and technology is no exception. Application of AI models to a variety of problems in life sciences is a rapidly growing field. As pioneers in this field, we have a long history of developing neural network models to answer key questions in genomics (<a href="https://www.sciencedirect.com/science/article/abs/pii/S0303264704000942">Goodarzi et al, 2004, <i>Biosystems</i></a> and <a href="https://www.sciencedirect.com/science/article/abs/pii/S1476927105001106">Marashi et al, 2006, <i>Comp Biol Chem</i></a>). Modern novel neural network architectures as well as access to the computational resources required to deploy them has been a boon for computational genomics. From interpretable models for studying long-range combinatorial injections in DNA/RNA to large language models and foundation models in chemistry and genomics, we have enjoyed a resurgence in the promise of AI/ML in biology.</p>
<p>It should be noted, however, much of these advances have been community driven. Early on, we took advantage of convolutional neural networks to model RBP-RNA interactions (<a href="https://aacrjournals.org/cancerdiscovery/article/10/9/1410/2900/RBMS1-Suppresses-Colon-Cancer-Metastasis-through">Yu et al, 2020, <i>Cancer Disc</i></a>). We also leveraged graph convolutional neural networks and contributions from the <a href="https://deepchem.io/">DeepChem</a> community to carry out in silico functional drug screening (<a href="https://www.cell.com/cell-stem-cell/fulltext/S1934-5909(20)30547-6">Samuel et al, 2020, <i>Cell Stem Cell</i></a>). We have continued to build neural network models customized for various applications in genomics; for example, we recently introduced: (i) exoGRU for prediction of small RNA secretion (<a href="https://www.biorxiv.org/content/10.1101/2023.04.04.535452v1">Zirak et al, 2023</a>), (ii) DM2D for identification of non-coding regulatory regions that drive human cancers using whole-genome sequencing data (<a href="https://www.biorxiv.org/content/10.1101/2023.04.14.535921v1">Woo et al, 2023</a>), and (iii) Ribostrike, for functional drug screening across regulatory RNAs (<a href="https://www.biorxiv.org/content/10.1101/2023.01.13.524005v1">Arshadi et al, 2023</a>). Building on these earlier works, we are now using large language models to build specialized and biology-inspired models for applications in functional genomics, transcriptomics, and single cell biology.</p>
<ul>
<li>Woo BJ, Moussavi-Baygi M, Karner H, Karimzadeh M, Garcia K, Joshi T, Yin K, Navickas A, Gilbert LA, Wang B, Asgharian H✝, Feng FY✝, <strong>Goodarzi H</strong>✝ (2023). Integrative identification of non-coding regulatory regions driving metastatic prostate cancer. ✝ Co-corresponding authors <a href="https://www.biorxiv.org/content/10.1101/2023.04.14.535921v1"><i class="ai ai-biorxiv"></i></a></li>
<li>Zirak B, Naghipourfar M, Saberi A, Pouyabahar D, Zarezadeh A, Fish L, Luo L, Huh D, Sharifi-Zarchi A, <strong>Goodarzi H</strong> (2023). Revealing the Grammar of Small RNA Secretion Using Interpretable Machine Learning. <a href="https://www.biorxiv.org/content/10.1101/2023.04.04.535452v1"><i class="ai ai-biorxiv"></i></a></li>
<li>Arshadi AK*, Salem M*, Karner H*, Garcia K, Arab A, Yuan JS, <strong>Goodarzi H</strong> (2023). Functional microRNA-Targeting Drug Discovery by Graph-Based Deep Learning. *Contributed equally; <a href="https://www.biorxiv.org/content/10.1101/2023.01.13.524005v1"><i class="ai ai-biorxiv"></i></a></li>
<li>Samuel RM, Majd H, Richter M, et al, Ott M, <strong>Goodarzi H</strong>✝, Fattahi F✝ (2020). Androgen Signaling Regulates SARS-CoV-2 Receptor Levels and Is Associated with Severe COVID-19 Symptoms in Men. <strong><em>Cell Stem Cell</em></strong> 27:876-889. ✝ Co-corresponding authors <a href="https://www.cell.com/cell-stem-cell/fulltext/S1934-5909(20)30547-6"><i class="fa fa-chrome"></i></a></li>
</ul>
</div>
</div>
</div>
</div>
<div class="row box-shadow">
<div class="col-xs-12 col-sm-12 col-md-12">
<div class="row thumbnail row-sm-flex-center">
<div class="col-xs-4 col-sm-4 col-md-3">
<img class="img-responsive" src="images/img/scRNA-seq.jpg">
</div>
<div class="col-xs-8 col-sm-8 col-md-9">
<h2>Dissecting the evolutionary dynamics of cancer progression and tumor-environment interactions</h2>
<p>Over the past decade, cancer progression has emerged as a complex evolutionary process with many dynamics forces at play at every step. The resulting widespread reprogramming of the gene expression landscape in cancer cells is a hallmark of cancer development. While the focus of cancer biologists has been on the key signaling pathways and regulatory programs that are hijacked by cancer cells, my group has been interested in the possibility of emergent regulatory modules that are engineered by cancer cells and fall outside of existing regulatory networks. This question led us to the discovery of orphan non-coding RNAs (oncRNAs), a class of small non-coding RNAs that are generally not expressed in normal tissue. We have demonstrated that cancer cells can adopt oncRNAs to carry out new regulatory functions that promote metastatic progression.</p>
<p>An evolutionary view of cancer progression, also requires capturing the population dynamics and identifying the “attractor” regulatory states that are most metastatic. We are taking advantage of mouse models of metastasis, in conjunction with cutting-edge technologies that are built on single-cell profiling, to reveal the complex and intricate evolutionary trajectories that lead to metastatic dissemination. We have observed that the notion of “tumor heterogeneity” is most likely the result of multiple parallel (and possibly competing) survival strategies (<a href="http://www.nature.com/ncomms/2016/160503/ncomms11246/full/ncomms11246.html">Nguyen et al, 2016, <i>Nature Comm</i></a>). More importantly, these strategies are specific to the distal organ microenvironment as well interactions with stromal and immune cells.
</p>
<ul>
<li>Fish L, Zhang S, Yu J, Culbertson B, Zhou A, Goga A, <strong>Goodarzi H</strong> (2018). Cancer cells exploit an orphan RNA to drive metastatic progression. <strong><em>Nature Med</em></strong> 24, 1743-51. <a href="https://www.nature.com/articles/s41591-018-0230-4"><i class="fa fa-chrome"></i></a></li>
<li>Nguyen A, Yoshida M, <strong>Goodarzi H</strong>, Tavazoie SF (2016). Highly variable cancer subpopulations that exhibit enhanced transcriptome variability and metastatic fitness. <strong><em>Nature Comm</em></strong> 7: 11246.<a href="http://www.nature.com/ncomms/2016/160503/ncomms11246/full/ncomms11246.html"><i class="fa fa-chrome"></i></a></li>
</ul>
</div>
</div>
</div>
</div>
<div class="row box-shadow">
<div class="col-xs-12 col-sm-12 col-md-12">
<div class="row thumbnail row-sm-flex-center">
<div class="col-xs-4 col-sm-4 col-md-3">
<img class="img-responsive" src="images/img/platform.jpg">
</div>
<div class="col-xs-8 col-sm-8 col-md-9">
<h2>Discovering novel post-transcriptional regulatory programs that drive human disease</h2>
<p>Complex human pathologies, such as cancer and neurodegenerative diseases, accompany widespread dysregulations in the regulatory programs that govern gene expression dynamics. A major component of my research is focused on unbiased and systematic platforms that enable the discovery of mechanistically novel post-transcriptional regulatory pathways that contribute to disease progression. For example, by focusing on small non-coding RNAs that are induced under stress, we identified a novel of class of tRNA-derived tRNA fragments (tiRNAs) that act as suppressors of breast cancer metastasis (<a href="http://www.cell.com/cell/abstract/S0092-8674(15)00318-9">Goodarzi et al, 2015, <i>Cell</i></a>). Recently, we also reported the discovery a post-transcriptional regulatory pathway that was not only mechanistically novel, but also directly promotes breast cancer metastasis (<a href="Metastasis-suppressor transcript destabilization through TARBP2 binding of mRNA hairpins">Goodarzi et al, 2014, <i>Nature</i></a>). These discoveries were made possible with development of integrated strategies, which combine modern experimental and computational technologies. This interdisciplinary approach, which taps into my background as a computational and experimental biologist, is crucial for tackling complex phenotypes in human disease.</p>
<ul>
<li>Culbertson B*, Garcia K*, Markett D, Asgharian H, Chen L, Fish L, Navickas A, Yu J, Woo B, Nanda S, Rabinowitz J, and <strong>Goodarzi H</strong> (2023). A sense-antisense RNA interaction promotes breast cancer metastasis via regulation of NQO1 expression. <strong><em>Nature Cancer</em></strong> doi:10.1038/s43018-023-00554-7 *Contributed equally <a href="https://www.nature.com/articles/s43018-023-00554-7"><i class="fa fa-chrome"></i></a><a href="https://www.biorxiv.org/content/10.1101/2021.10.08.463652v1"><i class="ai ai-biorxiv"></i></a></li>
<li>Navickas A*, Asgharian H*, Winkler J, Fish L, Garcia K, Markett D, Dodel M, Culbertson B, Miglani S, Joshi T, Nguyen P, Zhang S, Stevers N, Hwang H, Mardakheh F, Goga A, and <strong>Goodarzi H</strong> (2023). An mRNA processing pathway suppresses metastasis by governing translational control from the nucleus. <strong><em>Nature Cell Bio</em></strong>10.1038/s41556-023-01141-9 *Contributed equally <a href="https://www.nature.com/articles/s41556-023-01141-9"><i class="fa fa-chrome"></i></a><a href="https://www.biorxiv.org/content/10.1101/2021.10.04.463118v1"><i class="ai ai-biorxiv"></i></a></li>
<li>Fish L, Khoroshkin M, Navickas A, Garcia K, Culbertson B, Hänisch B, Zhang S, Nguyen HCB, Soto L, Dermit M, Mardakheh FK, Molina H, Alarcón C, Najafabadi HS, and <strong>Goodarzi H</strong> (2021). A pro-metastatic splicing program regulated by SNRPA1 interactions with structured RNA elements. <strong><em>Science</em></strong> 372 (6543) eabc7531 <a href="https://science.sciencemag.org/content/372/6543/eabc7531"><i class="fa fa-chrome"></i></a></li>
<li>Yu J, Naviskas A, Asgharian H, Culbertson B, Fish L, Garcia K, Olegario JP, Dermit M, Dodel M, Hanisch B, Liu Y, Weinberg EM, Dienstmann R, Warren RS, Mardakheh F, and <strong>Goodarzi H</strong> (2020). RBMS1 suppresses colon cancer metastasis through targeted stabilization of its mRNA regulon. <strong><em>Cancer Disc</em></strong> 10:1410–23 <a href="https://www.biorxiv.org/content/10.1101/2020.01.22.916205v1"><i class="ai ai-biorxiv"></i></a> <a href="https://cancerdiscovery.aacrjournals.org/content/early/2020/06/06/2159-8290.CD-19-1375"><i class="fa fa-chrome"></i></a></li>
<li>Fish L, Navickas A, Culbertson B, Xu Y, Nguyen HCB, Zhang S, Hochman M, Okimoto R, Dill BD, Molina H, Najafabadi HS, Alarcon C, Ruggero D, and <strong>Goodarzi H</strong> (2018). Nuclear TARBP2 Drives Oncogenic Dysregulation of RNA Splicing and Decay. <strong><em>Mol Cell</em></strong> doi:10.1016/j.molcel.2019.06.001. <a href="https://www.cell.com/molecular-cell/fulltext/S1097-2765(19)30434-4"><i class="fa fa-chrome"></i></a></li>
<li><strong>Goodarzi H</strong>*✝, Nguyen HCB, Zhang S, Dill BD, Molina H, Tavazoie SF✝ (2016). Modulated expression of specific tRNAs drives gene expression and cancer progression. <strong><em>Cell</em></strong> 165, 1416-1427. *Contributed equally; ✝ Co-corresponding authors. <a href="http://www.cell.com/cell/fulltext/S0092-8674(16)30649-3"><i class="fa fa-chrome"></i></a></li>
</ul>
</div>
</div>
</div>
</div>
<div class="row box-shadow">
<div class="col-xs-12 col-sm-12 col-md-12">
<div class="row thumbnail row-sm-flex-center">
<div class="col-xs-4 col-sm-4 col-md-3">
<img class="img-responsive" src="images/img/temporal.jpg">
</div>
<div class="col-xs-8 col-sm-8 col-md-9">
<h2>Post-transcriptional regulators and their roles in neuronal development and neurodegenerative disease</h2>
<p>Brain differs extensively from other tissues with respect to its transcriptome profile, with large sets of genes specifically expressed or inhibited in the brain. Among the regulators of brain-specific gene expression programs, however, factors that determine the stability and decay of mRNAs are surprisingly understudied. MicroRNAs (miRNAs) and RNA-binding proteins (RBPs) are the largest classes of such factors, which often function through binding to specific sequences within the 3’ untranslated region (UTR) of their target mRNAs – binding of miRNAs often leads to mRNA destabilization, and the binding of RBPs can either stabilize or destabilize the mRNA. There is increasing evidence that these factors play a pivotal role in shaping the transcriptome and identity of brain cells, and that deficits in their function is linked to various neurodevelopmental and neurodegenerative disorders, including Alzheimer’s disease (AD).</p>
<p>In a collaborative effort involving the Fattahi (UCSF) and Najafabadi (McGill) labs, we are developing novel computational frameworks as well as robust experimental models to study the contribution of RNA-binding proteins and other post-transcriptional regulators to neuronal development and neurodegenrative disease.</p>
<ul>
<li>Alkallas R, Fish L, <strong>Goodarzi H</strong>, Najafabadi HS (2017). Inference of RNA decay rate from transcriptional profiling highlights the regulatory programs of Alzheimer’s disease. <strong><em>Nature Comm</em></strong> 8: 909. <a href="https://www.nature.com/articles/s41467-017-00867-z"><i class="fa fa-chrome"></i></a></li>
<li>Hwang HW, Park CY, <strong>Goodarzi H</strong>, Fak JJ, Mele A, Moore MJ, Saito Y, Darnell RB (2016). PAPERCLIP Identifies MicroRNA Targets and a Role of CstF64/64tau in Promoting Non-canonical poly(A) Site Usage. <strong><em>Cell Rep</em></strong> 15(2):423-435.<a href="http://www.sciencedirect.com/science/article/pii/S2211124716302649"><i class="fa fa-chrome"></i></a></li>
<li>Chiu IM, Morimoto ETA, <strong>Goodarzi H</strong>, et al., Maniatis T (2013). A Neurodegeneration-Specific Gene-Expression Signature of Acutely Isolated Microglia from an Amyotrophic Lateral Sclerosis Mouse Model. <strong><em>Cell Rep</em></strong> 4(2): 385-401 <a href="http://www.cell.com/cell-reports/fulltext/S2211-1247(13)00296-9"><i class="fa fa-chrome"></i></a></li>
</ul>
</div>
</div>
</div>
</div>
<div class="row box-shadow">
<div class="col-xs-12 col-sm-12 col-md-12">
<div class="row thumbnail row-sm-flex-center">
<div class="col-xs-4 col-sm-4 col-md-3">
<img class="img-responsive" src="images/img/ssRNA.jpg">
</div>
<div class="col-xs-8 col-sm-8 col-md-9">
<h2>Computational discovery and characterization of structural regulatory elements in RNA</h2>
<p>A systematic approach to cis-regulatory element discovery in RNA requires capturing the information provided by both the structure and the underlying sequence. The inability of motif discovery methodologies to seamlessly incorporate structural information as part of their search algorithms significantly hinders the identification of structural elements in RNA. To address the challenge outlined above, we have implemented, and continue to expand, a computational framework for discovering structural RNA elements that govern the behavior of RNA in the cell. In this approach, named TEISER (tool for eliciting informative structural elements in RNA), the large space of small structural seeds is systematically explored to identify elements that are significantly informative of transcriptomic measurements (<a href="http://www.nature.com/nature/journal/v485/n7397/full/nature11013.html">Goodarzi et al, 2012, <i>Nature</i></a>). Using this approach, we have identified a number of structural elements that play a direct role in gene expression regulation and disease (e.g. <a href="Metastasis-suppressor transcript destabilization through TARBP2 binding of mRNA hairpins">Goodarzi et al, 2014, <i>Nature</i></a>).</p>
<ul>
<li>Fish L, Khoroshkin M, Navickas A, Garcia K, Culbertson B, Hänisch B, Zhang S, Nguyen HCB, Soto L, Dermit M, Mardakheh FK, Molina H, Alarcón C, Najafabadi HS, and <strong>Goodarzi H</strong> (2021). A pro-metastatic splicing program regulated by SNRPA1 interactions with structured RNA elements. <strong><em>Science</em></strong> 372 (6543) eabc7531 <a href="https://science.sciencemag.org/content/372/6543/eabc7531"><i class="fa fa-chrome"></i></a></li>
<li><strong>Goodarzi H</strong>, Najafabadi HS, Oikonomou P, Greco TM, Fish L, Salavati R, Cristea IM, Tavazoie S (2012). Systematic discovery of structural elements governing stability of mammalian messenger RNAs. <strong><em>Nature</em></strong> 485, 264-268. <a href="http://www.nature.com/nature/journal/v485/n7397/full/nature11013.html"><i class="fa fa-chrome"></i></a></li>
<li><strong>Goodarzi H</strong>, Zhang S, Buss CG, Fish L, Tavazoie S, Tavazoie SF (2014). Metastasis-suppressor transcript destabilization through TARBP2 binding of mRNA hairpins. <strong><em>Nature</em></strong> 513, 255-260 <a href="http://www.nature.com/nature/journal/vaop/ncurrent/full/nature13466.html"><i class="fa fa-chrome"></i></a></li>
<li>Oikonomou P*, <strong>Goodarzi H</strong>*, Tavazoie S (2014). Systematic Identification of Regulatory Elements in Conserved 3? UTRs of Human Transcripts. <strong><em>Cell Rep</em></strong> 7(1): 281-292. *Contributed equally <a href="http://www.cell.com/cell-reports/fulltext/S2211-1247(14)00159-4"><i class="fa fa-chrome"></i></a></li>
</ul>
</div>
</div>
</div>
</div>
<!--/.row-->
<div class="row box-shadow">
<div class="col-xs-12 col-sm-12 col-md-12">
<div class="row thumbnail row-sm-flex-center">
<div class="col-xs-4 col-sm-4 col-md-3">
<img class="img-responsive" src="images/img/c3ulib.jpg">
</div>
<div class="col-xs-8 col-sm-8 col-md-9">
<h2>Developing integrated machine learning and experimental technologies to dissect regulatory interactions </h2>
<p>Deciphering the noncoding regulatory genome is a formidable challenge. Despite the wealth of available gene expression data, broadly applicable methods for characterizing the regulatory elements that shape the underlying dynamics have been in short supply. To overcome this challenge, we have developed a suite of integrated computational and experimental techniques that overcome the major obstacles in revealing the regulatory logic underlying RNA dynamics in the cell under normal and pathologic conditions. Our computational frameworks for detecting linear and structural regulatory DNA and RNA motifs rely on directly assessing the mutual information between sequence and whole-transcriptomic measurements. Our approach makes minimal assumptions about the background sequence model and the mechanisms by which elements affect gene expression. In parallel, we have developed a series of experimental strategies, based on whole-genome observations, to validate and functionally probe these regulatory interactions in vivo. While our findings provide an encyclopedic snapshot of regulatory interactions in the cell, our knowledge of the regulatory genome is still in its infancy. Applying these strategies to other experimental models is a crucial step towards a more comprehensive understanding of the regulatory genome.</p>
<ul>
<li>Khoroshkin MS, Asarnow D, Navickas A, Winters A, Yu J, Zhou SK, Zhou S, Palka C, Fish LC, Ansel M, Cheng Y, Gilbert L, <strong>Goodarzi H</strong> (2023). A systematic search for RNA structural switches across the human transcriptome. <a href="https://www.biorxiv.org/content/10.1101/2023.03.11.532161v1"><i class="ai ai-biorxiv"></i></a></li>
<li>Khoroshkin MS*, Buyan A*, Dodel M*, Navickas A, Yu J, Trejo F, Doty A, Baratam R, Zhou S, Joshi T, Miglani S, Choi MH, Subramanyam V, Modi H, Corces R, Markett D, Kulakovskiy I, Mardakheh FK, <strong>Goodarzi H</strong> (2023). Systematic Identification of Post-Transcriptional Regulatory Modules. *Contributed equally; <a href="https://www.biorxiv.org/content/10.1101/2023.02.27.530345v1"><i class="ai ai-biorxiv"></i></a></li>
<li>Oikonomou P*, <strong>Goodarzi H</strong>*, Tavazoie S (2014). Systematic Identification of Regulatory Elements in Conserved 3? UTRs of Human Transcripts. <strong><em>Cell Reports</em></strong> 7(1): 281-292. *Contributed equally <a href="http://www.cell.com/cell-reports/fulltext/S2211-1247(14)00159-4"><i class="fa fa-chrome"></i></a></li>
<li><strong>Goodarzi H</strong>*, Elemento O*, Tavazoie S (2009). Revealing Global Regulatory Perturbations across Human Cancers. <strong><em>Mol Cell</em></strong> 36:900-11. *contributed equally <a href="http://www.cell.com/molecular-cell/fulltext/S1097-2765(09)00857-0"><i class="fa fa-chrome"></i></a></li>
<li>Najafabadi HS*, <strong>Goodarzi H</strong>*, Salavati R (2009). Universal function-specificity of codon usage. <strong><em>Nucl Acids Res</em></strong> 37(21):7014-7023. *contributed equally <a href="http://nar.oxfordjournals.org/cgi/content/full/gkp792"><i class="fa fa-chrome"></i></a></li>
</ul>
</div>
</div>
</div>
</div>
<div class="row box-shadow">
<div class="col-xs-12 col-sm-12 col-md-12">
<div class="row thumbnail row-sm-flex-center">
<div class="col-xs-4 col-sm-4 col-md-3">
<img class="img-responsive" src="images/img/m6A.jpg">
</div>
<div class="col-xs-8 col-sm-8 col-md-9">
<h2>Dissecting the role of epitranscriptomic modifications in RNA dynamics</h2>
<p>N<sup>6</sup>-methyladenosine (m6A) has been recently identified as an epitranscriptomic modification of mRNAs in eukaryotes, but its regulatory consequences and functional role in the cell is largely uncharacterized. In a series of studies, we have depicted a pivotal role for m6A modifications in miRNA processing. Using computational tools and focused experimental techniques, we have demonstrated that this modification marks the sites of primary miRNAs and helps recruit the miRNA machinery. We successfully identified the RNA-binding protein HNRNPA2B1 as one nuclear reader of this modification, which initiates the processing by interacting with DGCR8. In our view, this but one example of RNA editing regulating key RNA processing events in the cell. As such, we are interested in understanding how RNA methylation is initiated, what is its impact on the targets RNA molecule, and how this effects is brought about.</p>
<ul>
<li>Alarcon C, <strong>Goodarzi H</strong>, Lee H, Liu X, Tavazoie S, Tavazoie SF (2015). HNRNPA2B1 Is a Mediator of m6A-Dependent Nuclear RNA Processing Events. <strong><em>Cell</em></strong> 162: 1299-1308. <a href="http://www.cell.com/cell/abstract/S0092-8674(15)01024-7"><i class="fa fa-chrome"></i></a></li>
<li>Alarcon CR, Lee H*, <strong>Goodarzi H</strong>*, Halberg N, Tavazoie S (2015). N<sup>6</sup>-methyladenosine marks primary microRNAs for processing. <strong><em>Nature</em></strong> 519, 482-485. *Contributed equally <a href="http://www.nature.com/nature/journal/v519/n7544/full/nature14281.html?WT.ec_id=NATURE-20150326"><i class="fa fa-chrome"></i></a></li>
</ul>
</div>
</div>
</div>
</div>
</div>
<!--/.container-->
<!--/#research-->
</section>
<section id="get-started">
<div class="container">
<div class="row">
<div class="col-sm-12">
<h2>Want to join our team?</h2>
<p>Do you have ideas that you think may help us do a better science? Then...</p>
<a href="contact-us.html" class="btn btn-primary">Contact us</a> </div>
</div>
</div>
<!--/.container-->
</section>
<!--/#get-started-->
<div class="color-border"> </div>
<footer id="footer">
<div class="container">
<div class="row">
<div class="col-sm-6">Copyright © 2015 Goodarzi Lab.
<br /><small>Design by <a href="http://www.templategarden.com" rel="nofollow">TemplateGarden</a></small>
</div>
<div class="col-sm-6">
<div class="follow-us"> <a class="fa fa-twitter social-icon" href="https://twitter.com/genophoria"></a> <a class="fa fa-linkedin social-icon" href="https://www.linkedin.com/in/hgoodarzi/"></a> </div>
</div>
</div>
</div>
</footer>
<!--/#footer-->
<script src="js/jquery.js"></script>
<script src="js/bootstrap.min.js"></script>
<script src="js/jquery.prettyPhoto.js"></script>
<script src="js/jquery.isotope.min.js"></script>
<script src="js/main.js"></script>
</body>
</html>