forked from naver-ai/calm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
352 lines (296 loc) · 12.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
"""
CALM
Copyright (c) 2021-present NAVER Corp.
MIT license
"""
import numpy as np
import os
import pickle
import random
import torch
import torch.nn as nn
import torch.optim
from collections import OrderedDict
from config import get_configs
from data_loaders import get_data_loader
from logger import load_logger
from util import string_contains_any
import network
from network.util import remove_layer
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
def set_random_seed(seed):
if seed is None:
return
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
class PerformanceMeter(object):
def __init__(self):
self.current_value = None
self.value_per_epoch = []
def update(self, new_value):
self.value_per_epoch.append(new_value)
self.current_value = self.value_per_epoch[-1]
class Trainer(object):
_CHECKPOINT_NAME_TEMPLATE = '{}_checkpoint.pth.tar'
_SPLITS = ('train', 'val', 'test')
_RESIZE_LENGTH = 224
_NUM_CLASSES_MAPPING = {
"CUB": 200,
"ILSVRC": 1000,
"OpenImages": 100,
}
_FEATURE_PARAM_LAYER_PATTERNS = {
'vgg': ['features.'],
'resnet': ['conv1', 'layer1', 'layer2', 'layer3'],
'inception': ['Mixed', 'Conv2d_1', 'Conv2d_2',
'Conv2d_3', 'Conv2d_4'],
}
_FEATURE_PARAM_LAYER_PATTERNS_FINETUNE = {
'vgg': ['features.', 'conv6', 'bn6'],
'resnet': ['conv1', 'bn1', 'layer1', 'layer2',
'layer3', 'layer4'],
'inception': ['Mixed', 'Conv2d_1', 'Conv2d_2',
'Conv2d_3', 'Conv2d_4', 'SPG_A3'],
}
def __init__(self):
self.device = torch.device(
'cuda' if torch.cuda.is_available() else 'cpu')
self.args = get_configs()
self.score_map_process = self.args.score_map_process
self.score_map_method = self.args.score_map_method
self.norm_type = self.args.norm_type
self.threshold_type = self.args.threshold_type
set_random_seed(self.args.seed)
print(self.args)
self._IOU_THRESHOLDS = self.args.iou_thresholds
self.eval_performance_meters = self._make_eval_dict()
self.num_classes = self._NUM_CLASSES_MAPPING[self.args.dataset_name]
self.reporter = self.args.reporter
self.model = self._set_model()
if self.args.use_load_checkpoint:
self.load_checkpoint('last', self.args.load_checkpoint)
self.criterion = self._set_criterion()
self.optimizer = self._set_optimizer()
self.loc_performance_per_tau = dict()
self.loaders = get_data_loader(
data_roots=self.args.data_paths,
metadata_root=self.args.metadata_root,
batch_size=self.args.batch_size,
workers=self.args.workers,
resize_size=self.args.resize_size,
crop_size=self.args.crop_size,
proxy_training_set=self.args.proxy_training_set,
)
self.logger = load_logger(self.args.logger_type)
def _make_eval_dict(self):
_EVAL_METRICS = ['loss', 'cls'] + \
[f'cue_{i}' for i in [1, 2, 3]]
eval_dict = {split: {} for split in self._SPLITS}
for split in self._SPLITS:
for metric in _EVAL_METRICS:
eval_dict[split][metric] = PerformanceMeter()
return eval_dict
def _set_model(self):
print("Loading model {}".format(self.args.architecture))
model = network.__dict__[self.args.architecture](
dataset_name=self.args.dataset_name,
pretrained=self.args.pretrained,
num_classes=self.num_classes,
large_feature_map=self.args.large_feature_map,
use_bn=self.args.use_bn,
attribution_method=self.args.attribution_method,
pretrained_path=self.args.pretrained_path,
)
model = model.to(self.device)
print(model, '\n')
return model
def _set_criterion(self):
criterion = nn.NLLLoss().to(self.device)
return criterion
def _set_optimizer(self):
param_features = []
param_classifiers = []
def param_features_substring_list(architecture):
patterns = self._FEATURE_PARAM_LAYER_PATTERNS_FINETUNE \
if self.args.is_different_checkpoint \
else self._FEATURE_PARAM_LAYER_PATTERNS
for key in patterns:
if architecture.startswith(key):
return patterns[key]
raise KeyError("Fail to recognize the architecture {}"
.format(self.args.architecture))
for name, parameter in self.model.named_parameters():
if string_contains_any(
name,
param_features_substring_list(self.args.architecture)):
param_features.append(parameter)
else:
param_classifiers.append(parameter)
optimizer = torch.optim.SGD([
{'params': param_features, 'lr': self.args.lr},
{'params': param_classifiers,
'lr': self.args.lr * self.args.lr_classifier_ratio}],
momentum=self.args.momentum,
weight_decay=self.args.weight_decay,
nesterov=True)
return optimizer
def _training(self, images, target, image_id=None):
output_dict = self.model(images)
probs = output_dict['probs']
features = output_dict['features']
loss = self.criterion(features, target)
return probs, loss
def train(self, split):
self.model.train()
loader = self.loaders[split]
total_loss = 0.0
num_correct = 0
num_images = 0
for batch_idx, (images, target, image_id) in enumerate(loader):
images = images.to(self.device)
target = target.to(self.device)
if batch_idx % max(int(len(loader) / 10), 1) == 0:
print(" iteration ({} / {})".format(batch_idx + 1, len(loader)))
probs, loss = self._training(images, target, image_id)
pred = probs.argmax(dim=1).detach()
total_loss += loss.item() * images.size(0)
num_correct += (pred == target).sum().item()
num_images += images.size(0)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
loss_average = total_loss / float(num_images)
classification_acc = num_correct / float(num_images) * 100
self.eval_performance_meters[split]['cls'].update(
classification_acc)
self.eval_performance_meters[split]['loss'].update(loss_average)
return dict(cls=classification_acc,
loss=loss_average)
def print_performances(self):
for split in self._SPLITS:
for metric in self.eval_performance_meters[split].keys():
current_performance = \
self.eval_performance_meters[split][metric].current_value
if current_performance is not None:
print("Split {}, metric {}: {}".format(
split, metric, current_performance))
def save_performances(self):
log_path = os.path.join(self.args.log_folder, 'performance_log.pickle')
with open(log_path, 'wb') as f:
pickle.dump(self.eval_performance_meters, f)
def _compute_accuracy(self, loader):
num_correct = 0
num_images = 0
for i, (images, targets, image_ids) in enumerate(loader):
images = images.to(self.device)
targets = targets.to(self.device)
with torch.no_grad():
output_dict = self.model(images)
probs = output_dict['probs']
pred = probs.argmax(dim=1)
num_correct += (pred == targets).sum().item()
num_images += images.size(0)
classification_acc = num_correct / float(num_images) * 100
return classification_acc
def evaluate_cls(self, split):
self.model.eval()
accuracy = self._compute_accuracy(loader=self.loaders[split])
self.eval_performance_meters[split]['cls'].update(accuracy)
def _torch_save_model(self, filename, epoch):
torch.save({'architecture': self.args.architecture,
'epoch': epoch,
'state_dict': self.model.state_dict(),
'optimizer': self.optimizer.state_dict()},
os.path.join(self.args.log_folder, filename))
def save_checkpoint(self, epoch):
self._torch_save_model(
self._CHECKPOINT_NAME_TEMPLATE.format('last'), epoch)
def report_train(self, train_performance, epoch, split='train'):
reporter_instance = self.reporter(self.args.reporter_log_root, epoch)
reporter_instance.add(
key='{split}/cls'.format(split=split),
val=train_performance['cls'])
reporter_instance.add(
key='{split}/loss'.format(split=split),
val=train_performance['loss'])
reporter_instance.write()
self.logger.report(msg_dict={'step': epoch,
f'{split}/loss': train_performance['loss'],
f'{split}/cls': train_performance['cls']})
def report(self, epoch, split):
reporter_instance = self.reporter(self.args.reporter_log_root, epoch)
msg_dict = {'step': epoch}
for metric in self.eval_performance_meters[split].keys():
reporter_instance.add(
key='{split}/{metric}'
.format(split=split, metric=metric),
val=self.eval_performance_meters[split][metric].current_value)
msg_dict[f'{split}/{metric}'] = \
self.eval_performance_meters[split][metric].current_value
reporter_instance.write()
self.logger.report(msg_dict=msg_dict)
def adjust_learning_rate(self, epoch):
if epoch != 0 and epoch % self.args.lr_decay_frequency == 0:
for param_group in self.optimizer.param_groups:
param_group['lr'] *= 0.1
def load_checkpoint(self, checkpoint_type, load_checkpoint=None):
checkpoint_path = self._make_ckpt_path(checkpoint_type, load_checkpoint)
if os.path.isfile(checkpoint_path):
if not torch.cuda.is_available():
ckpt = torch.load(checkpoint_path,
map_location=torch.device('cpu'))
if self.args.is_different_checkpoint:
state_dict = remove_layer(ckpt['state_dict'], 'conv_last')
self.model.load_state_dict(state_dict, strict=False)
else:
self.model.load_state_dict(ckpt['state_dict'], strict=True)
else:
checkpoint = torch.load(checkpoint_path)
state_dict = self._remove_module(checkpoint)
if self.args.is_different_checkpoint:
state_dict = remove_layer(state_dict, 'conv_last')
self.model.load_state_dict(state_dict, strict=False)
else:
self.model.load_state_dict(state_dict, strict=True)
print("Check {} loaded.\n".format(checkpoint_path))
else:
raise IOError("No checkpoint {}.".format(checkpoint_path))
def _remove_module(self, checkpoint):
state_dict = OrderedDict()
for key, value in checkpoint['state_dict'].items():
state_dict[key[7:] if key.startswith('module') else key] = value
return state_dict
def _make_ckpt_path(self, checkpoint_type, load_checkpoint):
if load_checkpoint is None:
checkpoint_path = os.path.join(
self.args.log_folder,
self._CHECKPOINT_NAME_TEMPLATE.format(checkpoint_type))
else:
checkpoint_path = os.path.join(load_checkpoint,
'last_checkpoint.pth.tar')
return checkpoint_path
def main():
trainer = Trainer()
print(trainer.device)
print("===========================================================")
if trainer.args.is_train:
for epoch in range(trainer.args.epochs):
print("Start epoch {} ...".format(epoch + 1))
trainer.adjust_learning_rate(epoch + 1)
train_performance = trainer.train(split='train')
trainer.report_train(train_performance, epoch + 1, split='train')
trainer.evaluate_cls(split='val')
trainer.report(epoch + 1, split='val')
trainer.print_performances()
print("Epoch {} done.".format(epoch + 1))
trainer.save_checkpoint(trainer.args.epochs)
print("===========================================================")
print("Final epoch evaluation on test set ...")
trainer.evaluate_cls(split='test')
trainer.report(trainer.args.epochs, split='test')
trainer.print_performances()
trainer.save_performances()
trainer.logger.finalize_log()
if __name__ == '__main__':
main()