forked from naver-ai/calm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
213 lines (180 loc) · 8.51 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
"""
CALM
Copyright (c) 2021-present NAVER Corp.
MIT license
"""
import argparse
import munch
import importlib
import os
from os.path import join as ospj
import shutil
from util import Logger
_DATASET_NAMES = ('CUB', 'ILSVRC', 'OpenImages')
_ARCHITECTURE_NAMES = ('vgg16', 'resnet50', 'inception_v3')
_ATTRIBUTION_METHODS = ('CAM', 'CALM-EM', 'CALM-ML')
_SCORE_MAP_METHOD_NAMES = ('activation_map', 'backprop')
_SCORE_MAP_PROCESS_NAMES = (
'vanilla', 'vanilla-saliency', 'vanilla-superclass',
'jointll', 'jointll-superclass', 'jointll-superclass-mean',
'gtcond', 'gtcond-superclass', 'gtcond-superclass-mean',
'saliency',
'input_grad', 'integrated_grad', 'smooth_grad', 'var_grad')
_NORM_TYPES = ('max', 'minmax', 'clipping')
_THRESHOLD_TYPES = ('even', 'log')
_SPLITS = ('train', 'val', 'test')
_LOGGER_TYPE = ('PythonLogger')
def mch(**kwargs):
return munch.Munch(dict(**kwargs))
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def configure_data_paths(args):
train, val, test = set_data_path(
dataset_name=args.dataset_name,
data_root=args.data_root
)
data_paths = mch(train=train, val=val, test=test)
return data_paths
def set_data_path(dataset_name, data_root):
if dataset_name == 'ILSVRC':
train = test = ospj(data_root, dataset_name)
val = ospj(data_root, 'ImageNetV2')
elif dataset_name == 'CUB':
train = test = ospj(data_root, dataset_name, 'images')
val = ospj(data_root, 'CUBV2')
elif dataset_name == 'OpenImages':
train = val = test = ospj(data_root, dataset_name)
else:
raise ValueError("Dataset {} unknown.".format(dataset_name))
return train, val, test
def configure_mask_root(args):
mask_root = ospj(args.mask_root, 'OpenImages')
return mask_root
def configure_log_folder(args):
log_folder = ospj(args.save_root, args.experiment_name)
if os.path.isdir(log_folder):
if args.override_cache:
shutil.rmtree(log_folder, ignore_errors=True)
else:
raise RuntimeError("Experiment with the same name exists: {}"
.format(log_folder))
os.makedirs(log_folder)
return log_folder
def configure_log(args):
log_file_name = ospj(args.log_folder, 'log.log')
Logger(log_file_name)
def configure_reporter(args):
reporter = importlib.import_module('util').Reporter
reporter_log_root = ospj(args.log_folder, 'reports')
if not os.path.isdir(reporter_log_root):
os.makedirs(reporter_log_root)
return reporter, reporter_log_root
def configure_pretrained_path(args):
pretrained_path = None
return pretrained_path
def get_configs():
parser = argparse.ArgumentParser()
# Util
parser.add_argument('--seed', type=int)
parser.add_argument('--experiment_name', type=str, default='result')
parser.add_argument('--override_cache', type=str2bool, nargs='?',
const=True, default=False)
parser.add_argument('--workers', default=4, type=int,
help='number of data loading workers (default: 4)')
parser.add_argument('--use_load_checkpoint', type=str2bool, nargs='?',
const=True, default=False)
parser.add_argument('--load_checkpoint', type=str, default=None,
help='folder name for loading ckeckpoint')
parser.add_argument('--is_different_checkpoint', type=str2bool,
nargs='?', const=True, default=False)
parser.add_argument('--save_root', type=str, default='save')
parser.add_argument('--logger_type', type=str,
default='PythonLogger', choices=_LOGGER_TYPE)
# Data
parser.add_argument('--dataset_name', type=str, default='CUB',
choices=_DATASET_NAMES)
parser.add_argument('--data_root', metavar='/PATH/TO/DATASET',
default='dataset/',
help='path to dataset images')
parser.add_argument('--metadata_root', type=str, default='metadata/')
parser.add_argument('--mask_root', metavar='/PATH/TO/MASKS',
default='dataset/',
help='path to masks')
parser.add_argument('--proxy_training_set', type=str2bool, nargs='?',
const=True, default=False,
help='Efficient hyper_parameter search with a proxy '
'training set.')
# Setting
parser.add_argument('--architecture', default='resnet18',
choices=_ARCHITECTURE_NAMES,
help='model architecture: ' +
' | '.join(_ARCHITECTURE_NAMES) +
' (default: resnet18)')
parser.add_argument('--attribution_method', type=str, default='CAM',
choices=_ATTRIBUTION_METHODS)
parser.add_argument('--is_train', type=str2bool, nargs='?',
const=True, default=True)
parser.add_argument('--epochs', default=40, type=int,
help='number of total epochs to run')
parser.add_argument('--pretrained', type=str2bool, nargs='?',
const=True, default=True,
help='Use pre_trained model.')
parser.add_argument('--cam_curve_interval', type=float, default=.001,
help='CAM curve interval')
parser.add_argument('--resize_size', type=int, default=256,
help='input resize size')
parser.add_argument('--crop_size', type=int, default=224,
help='input crop size')
# Common hyperparameters
parser.add_argument('--batch_size', default=64, type=int,
help='Mini-batch size (default: 256), this is the total'
'batch size of all GPUs on the current node when'
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', default=0.01, type=float,
help='initial learning rate', dest='lr')
parser.add_argument('--lr_decay_frequency', type=int, default=30,
help='How frequently do we decay the learning rate?')
parser.add_argument('--lr_classifier_ratio', type=float, default=10,
help='Multiplicative factor on the classifier layer.')
parser.add_argument('--momentum', default=0.9, type=float,
help='momentum')
parser.add_argument('--weight_decay', default=1e-4, type=float,
help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('--use_bn', type=str2bool, nargs='?',
const=True, default=False)
parser.add_argument('--large_feature_map', type=str2bool, nargs='?',
const=True, default=False)
parser.add_argument('--iou_thresholds', nargs='+',
type=int, default=[30, 50, 70])
# Method-specific hyperparameters
parser.add_argument('--smoothing_ksize', type=int, default=1)
parser.add_argument('--score_map_method', type=str, default='activation_map',
choices=_SCORE_MAP_METHOD_NAMES)
parser.add_argument('--score_map_process', type=str, default='vanilla',
choices=_SCORE_MAP_PROCESS_NAMES)
parser.add_argument('--norm_type', default='minmax', type=str,
choices=_NORM_TYPES)
parser.add_argument('--threshold_type', default='even', type=str,
choices=_THRESHOLD_TYPES)
parser.add_argument('--smooth_grad_nr_iter', type=int, default=50,
help='SmoothGrad number of sampling')
parser.add_argument('--smooth_grad_sigma', type=float, default=4.0,
help='SmoothGrad sigma multiplier')
parser.add_argument('--integrated_grad_nr_iter', type=int, default=50,
help='IntegratedGradient number of steps')
args = parser.parse_args()
args.log_folder = configure_log_folder(args)
configure_log(args)
args.data_root = args.data_root.strip('"')
args.data_paths = configure_data_paths(args)
args.metadata_root = ospj(args.metadata_root, args.dataset_name)
args.mask_root = configure_mask_root(args)
args.reporter, args.reporter_log_root = configure_reporter(args)
args.pretrained_path = configure_pretrained_path(args)
return args