forked from apache/mxnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run.py
227 lines (195 loc) · 8.48 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import find_mxnet
import mxnet as mx
import numpy as np
import logging
logging.basicConfig(level=logging.DEBUG)
import argparse
from collections import namedtuple
from skimage import io, transform
from skimage.restoration import denoise_tv_chambolle
parser = argparse.ArgumentParser(description='neural style')
parser.add_argument('--model', type=str, default='vgg19',
choices = ['vgg'],
help = 'the pretrained model to use')
parser.add_argument('--content-image', type=str, default='input/IMG_4343.jpg',
help='the content image')
parser.add_argument('--style-image', type=str, default='input/starry_night.jpg',
help='the style image')
parser.add_argument('--stop-eps', type=float, default=.005,
help='stop if the relative chanage is less than eps')
parser.add_argument('--content-weight', type=float, default=10,
help='the weight for the content image')
parser.add_argument('--style-weight', type=float, default=1,
help='the weight for the style image')
parser.add_argument('--tv-weight', type=float, default=1e-2,
help='the magtitute on TV loss')
parser.add_argument('--max-num-epochs', type=int, default=1000,
help='the maximal number of training epochs')
parser.add_argument('--max-long-edge', type=int, default=600,
help='resize the content image')
parser.add_argument('--lr', type=float, default=.001,
help='the initial learning rate')
parser.add_argument('--gpu', type=int, default=0,
help='which gpu card to use, -1 means using cpu')
parser.add_argument('--output', type=str, default='output/out.jpg',
help='the output image')
parser.add_argument('--save-epochs', type=int, default=50,
help='save the output every n epochs')
parser.add_argument('--remove-noise', type=float, default=.02,
help='the magtitute to remove noise')
args = parser.parse_args()
def PreprocessContentImage(path, long_edge):
img = io.imread(path)
logging.info("load the content image, size = %s", img.shape[:2])
factor = float(long_edge) / max(img.shape[:2])
new_size = (int(img.shape[0] * factor), int(img.shape[1] * factor))
resized_img = transform.resize(img, new_size)
sample = np.asarray(resized_img) * 256
# swap axes to make image from (224, 224, 3) to (3, 224, 224)
sample = np.swapaxes(sample, 0, 2)
sample = np.swapaxes(sample, 1, 2)
# sub mean
sample[0, :] -= 123.68
sample[1, :] -= 116.779
sample[2, :] -= 103.939
logging.info("resize the content image to %s", new_size)
return np.resize(sample, (1, 3, sample.shape[1], sample.shape[2]))
def PreprocessStyleImage(path, shape):
img = io.imread(path)
resized_img = transform.resize(img, (shape[2], shape[3]))
sample = np.asarray(resized_img) * 256
sample = np.swapaxes(sample, 0, 2)
sample = np.swapaxes(sample, 1, 2)
sample[0, :] -= 123.68
sample[1, :] -= 116.779
sample[2, :] -= 103.939
return np.resize(sample, (1, 3, sample.shape[1], sample.shape[2]))
def PostprocessImage(img):
img = np.resize(img, (3, img.shape[2], img.shape[3]))
img[0, :] += 123.68
img[1, :] += 116.779
img[2, :] += 103.939
img = np.swapaxes(img, 1, 2)
img = np.swapaxes(img, 0, 2)
img = np.clip(img, 0, 255)
return img.astype('uint8')
def SaveImage(img, filename):
logging.info('save output to %s', filename)
out = PostprocessImage(img)
if args.remove_noise != 0.0:
out = denoise_tv_chambolle(out, weight=args.remove_noise, multichannel=True)
io.imsave(filename, out)
# input
dev = mx.gpu(args.gpu) if args.gpu >= 0 else mx.cpu()
content_np = PreprocessContentImage(args.content_image, args.max_long_edge)
style_np = PreprocessStyleImage(args.style_image, shape=content_np.shape)
size = content_np.shape[2:]
# model
Executor = namedtuple('Executor', ['executor', 'data', 'data_grad'])
def style_gram_symbol(input_size, style):
_, output_shapes, _ = style.infer_shape(data=(1, 3, input_size[0], input_size[1]))
gram_list = []
grad_scale = []
for i in range(len(style.list_outputs())):
shape = output_shapes[i]
x = mx.sym.Reshape(style[i], target_shape=(int(shape[1]), int(np.prod(shape[2:]))))
# use fully connected to quickly do dot(x, x^T)
gram = mx.sym.FullyConnected(x, x, no_bias=True, num_hidden=shape[1])
gram_list.append(gram)
grad_scale.append(np.prod(shape[1:]) * shape[1])
return mx.sym.Group(gram_list), grad_scale
def get_loss(gram, content):
gram_loss = []
for i in range(len(gram.list_outputs())):
gvar = mx.sym.Variable("target_gram_%d" % i)
gram_loss.append(mx.sym.sum(mx.sym.square(gvar - gram[i])))
cvar = mx.sym.Variable("target_content")
content_loss = mx.sym.sum(mx.sym.square(cvar - content))
return mx.sym.Group(gram_loss), content_loss
def get_tv_grad_executor(img, ctx, tv_weight):
"""create TV gradient executor with input binded on img
"""
if tv_weight <= 0.0:
return None
nchannel = img.shape[1]
simg = mx.sym.Variable("img")
skernel = mx.sym.Variable("kernel")
channels = mx.sym.SliceChannel(simg, num_outputs=nchannel)
out = mx.sym.Concat(*[
mx.sym.Convolution(data=channels[i], weight=skernel,
num_filter=1,
kernel=(3, 3), pad=(1,1),
no_bias=True, stride=(1,1))
for i in range(nchannel)])
kernel = mx.nd.array(np.array([[0, -1, 0],
[-1, 4, -1],
[0, -1, 0]])
.reshape((1, 1, 3, 3)),
ctx) / 8.0
out = out * tv_weight
return out.bind(ctx, args={"img": img,
"kernel": kernel})
import importlib
model_module = importlib.import_module('model_' + args.model)
style, content = model_module.get_symbol()
gram, gscale = style_gram_symbol(size, style)
model_executor = model_module.get_executor(gram, content, size, dev)
model_executor.data[:] = style_np
model_executor.executor.forward()
style_array = []
for i in range(len(model_executor.style)):
style_array.append(model_executor.style[i].copyto(mx.cpu()))
model_executor.data[:] = content_np
model_executor.executor.forward()
content_array = model_executor.content.copyto(mx.cpu())
# delete the executor
del model_executor
style_loss, content_loss = get_loss(gram, content)
model_executor = model_module.get_executor(
style_loss, content_loss, size, dev)
grad_array = []
for i in range(len(style_array)):
style_array[i].copyto(model_executor.arg_dict["target_gram_%d" % i])
grad_array.append(mx.nd.ones((1,), dev) * (float(args.style_weight) / gscale[i]))
grad_array.append(mx.nd.ones((1,), dev) * (float(args.content_weight)))
print([x.asscalar() for x in grad_array])
content_array.copyto(model_executor.arg_dict["target_content"])
# train
img = mx.nd.zeros(content_np.shape, ctx=dev)
img[:] = mx.rnd.uniform(-0.1, 0.1, img.shape)
lr = mx.lr_scheduler.FactorScheduler(step=80, factor=.9)
optimizer = mx.optimizer.SGD(
learning_rate = args.lr,
wd = 0.0005,
momentum=0.9,
lr_scheduler = lr)
optim_state = optimizer.create_state(0, img)
logging.info('start training arguments %s', args)
old_img = img.copyto(dev)
clip_norm = 1 * np.prod(img.shape)
tv_grad_executor = get_tv_grad_executor(img, dev, args.tv_weight)
for e in range(args.max_num_epochs):
img.copyto(model_executor.data)
model_executor.executor.forward()
model_executor.executor.backward(grad_array)
gnorm = mx.nd.norm(model_executor.data_grad).asscalar()
if gnorm > clip_norm:
model_executor.data_grad[:] *= clip_norm / gnorm
if tv_grad_executor is not None:
tv_grad_executor.forward()
optimizer.update(0, img,
model_executor.data_grad + tv_grad_executor.outputs[0],
optim_state)
else:
optimizer.update(0, img, model_executor.data_grad, optim_state)
new_img = img
eps = (mx.nd.norm(old_img - new_img) / mx.nd.norm(new_img)).asscalar()
old_img = new_img.copyto(dev)
logging.info('epoch %d, relative change %f', e, eps)
if eps < args.stop_eps:
logging.info('eps < args.stop_eps, training finished')
break
if (e+1) % args.save_epochs == 0:
SaveImage(new_img.asnumpy(), 'output/tmp_'+str(e+1)+'.jpg')
SaveImage(new_img.asnumpy(), args.output)
# In[ ]: